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Review
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• Metrics for evaluating classification models

– Accuracy, precision, recall 

• Cross-validation should be used to avoid over-fitting

– K-fold or LOOCV

• Logistic regression 

– Estimates Pr 𝑌 = 1 𝑋 = 𝑥 using sigmoid

– Maximum Likelihood Estimation (MLE) for 
objective

– Can use gradient descent for training

– Very interpretable



Outline

• Logistic regression

– Gradient descent for logistic regression

• Linear Discriminant Analysis (LDA)

• Lab (logistic regression, LDA, kNN)

• Feature selection

– Wrapper

– Filter

– Embedded methods
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Binary or 
discrete

4

𝑥 1 , … , 𝑥 𝑛 and 𝑦 1 , … , 𝑦 𝑛 , 𝑥(𝑖) ∈ 𝑅𝑑 , 𝑦(𝑖) ∈ {−1, 1}

𝑓 𝑥(𝑖) = 𝑦(𝑖)



Logistic Regression 
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Logistic Regression is a linear classifier!

Probabilistic model ℎ𝜃 𝑥 = P 𝑦 = 1 𝑥; 𝜃



Maximum Likelihood Estimation (MLE)
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Given training data  𝑋 = 𝑥(1), … , 𝑥(𝑛) with 

labels  Y = 𝑦(1), … , 𝑦(𝑛)

What is the likelihood of training data for parameter 𝜃?

Define likelihood function

Assumption: training points are independent

𝑀𝑎𝑥𝜃 𝐿 𝜃 = 𝑃[𝑌|𝑋; 𝜃]

𝐿 𝜃 =ෑ

𝑖=1

𝑛

𝑃[𝑦 𝑖 |𝑥 𝑖 ; 𝜃]



MLE for Logistic Regression
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𝑝 𝑦 𝑥, 𝜃 = ℎ𝜃 𝑥 𝑦 1 − ℎ𝜃 𝑥
1−𝑦

𝑦(𝑖)log ℎ𝜃 𝑥(𝑖) + (1 − 𝑦(𝑖))log 1 − ℎ𝜃 𝑥



Gradient Descent for Logistic 
Regression
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𝐽 𝜽 =

𝐽 𝜃 = −

𝑖=1

𝑛

𝐶𝑖



Computing Gradients
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• Derivative of sigmoid

– 𝑔 𝑧 =
1

1+𝑒−𝑧
; 𝑔′ 𝑧 =

𝑒−𝑧

1+𝑒−𝑧 2 = 𝑔(𝑧)(1 − 𝑔(𝑧))

• Derivative of hypothesis

– ℎ𝜃 𝑥 = 𝑔 𝜃𝑇𝑥 = 𝑔(𝜃𝑗𝑥𝑗 + σ𝑘≠𝑗 𝜃𝑘𝑥𝑘)

–
𝜕ℎ𝜃 𝑥

𝜕𝜃𝑗
=

𝜕𝑔 𝜃𝑇𝑥

𝜕𝜃𝑗
𝑥𝑗 = 𝑔 𝜃𝑇𝑥 1 − 𝑔 𝜃𝑇𝑥 𝑥𝑗

• Derivation of 𝐶𝑖

–
𝜕𝐶𝑖

𝜕𝜃𝑗
= 𝑦(𝑖)

1

ℎ𝜃 𝑥𝑖
g 𝜃𝑇𝑥 𝑖 1 − g 𝜃𝑇𝑥 𝑖 𝑥𝑗

(𝑖)
-

(1 − 𝑦(𝑖))
1

1−ℎ𝜃 𝑥𝑖
g 𝜃𝑇𝑥 𝑖 1 − g 𝜃𝑇𝑥 𝑖 𝑥𝑗

(𝑖)

= 𝑦 𝑖 − ℎ𝜃 𝑥 𝑖 𝑥𝑗
(𝑖)



Gradient Descent for Logistic 
Regression
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𝐽 𝜽 =



Gradient Descent for Logistic 
Regression
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This looks IDENTICAL to Linear Regression! 



LDA
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• Classify to one of k classes

• Logistic regression computes directly

– P 𝑌 = 1 𝑋 = 𝑥

– Assume sigmoid function

• LDA uses Bayes Theorem to estimate it

– P 𝑌 = 𝑘 𝑋 = 𝑥 =
P 𝑋 = 𝑥 𝑌 = 𝑘 P[𝑌=𝑘]

P[𝑋=𝑥]

– Let 𝜋𝑘 = P[𝑌 = 𝑘] be the prior probability of class 
k and 𝑓𝑘 𝑥 = P 𝑋 = 𝑥 𝑌 = 𝑘



LDA
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Assume 𝑓𝑘 𝑥 is Gaussian!
Unidimensional case (d=1)

Assumption: 𝜎1 = …𝜎𝑘 = σ



LDA decision boundary
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Pick class k to maximize 

Example: 𝑘 = 2, 𝜋1 = 𝜋2
Classify as class 1 if 𝑥 >

𝜇1+𝜇2

2

Bayes decision boundary Estimated decision boundary



LDA in practice
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Given training data 𝑥(𝑖), 𝑦(𝑖) , 𝑖 = 1, … , 𝑛, 𝑦(𝑖) ∈

{1, … , 𝐾}

1. Estimate mean 
and variance

2. Estimate prior

Given testing point 𝑥, predict k that maximizes:

𝑥(𝑖)

(𝑥(𝑖)− Ƹ𝜇𝑘)
2



LDA vs Logistic Regression
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• Logistic regression computes directly Pr 𝑌 = 1 𝑋 = 𝑥 by 
assuming sigmoid function

– Uses Maximum Likelihood Estimation

• LDA uses Bayes Theorem to estimate it

– Estimates mean, co-variance, and prior from training data

– Assumes Gaussian distribution for 
𝑓𝑘 𝑥 = Pr 𝑋 = 𝑥 𝑌 = 𝑘

• Which one is better?

– LDA can be sensitive to outliers

– LDA works well for Gaussian distribution

– Logistic regression is more complex to solve, but more 
expressive



Lab
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Lab Logistic Regression
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Train on data before 2005



Lab Logistic Regression
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Test on data in 2005



Lab LDA
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Lab kNN
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Linear models
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• Perceptron

• Logistic regression

• LDA 

𝑀𝑎𝑥𝑘



Outline

• Logistic regression

– Gradient descent for logistic regression

• Linear Discriminant Analysis (LDA)

• Lab (logistic regression, LDA, kNN)

• Feature selection

– Wrapper

– Filter

– Embedded methods
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Supervised Learning 

Data
Pre-

processing
Feature 

extraction
Learning 

model

Training

Labeled Classification
Regression

Testing

New 
data

Unlabeled

Learning 
model

Predictions

Healthy
Sick

Normalization Feature 
Selection

Price
Risk score

Classification Regression
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Example: Email Classification
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Bag-of-Words
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Boston

Could also use frequency
- 𝑓𝑖 𝑥 is the number of times word i appears in 𝑥



Representation
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• Large number of words in dictionary (>50,000)
• Very sparse representation (many features set at 0)



Feature selection
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• Feature Selection

• Process for choosing an optimal subset of features
according to a certain criteria

• Why we need Feature Selection:

1. To improve performance (in terms of speed,
predictive power, simplicity of the model).

2. To visualize the data for model selection.

3. To reduce dimensionality and remove noise.



Feature Search Space
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Exponentially large!



Methods for Feature Selection

• Wrappers
– Select subset of features that gives best prediction 

accuracy (using cross-validation)

– Model-specific

• Filters
– Compute some statistical metrics (correlation 

coefficient, mutual information)

– Select features with statistics higher than threshold

• Embedded methods
– Feature selection done as part of training

– Example: Regularization (Lasso, L1 regularization)
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Feature Engineering

• Feature engineering is crucial to getting good 
results

• Strategy: overshoot and regularize
– Define as many features as you can

– Use regularization for models that support it

– Use other feature selection methods (e.g., filters) 
otherwise

• Do cross-validation to evaluate selected features 
on multiple runs

• When feature selection is frozen, evaluate on test 
set

31
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