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Review

• Solution for multiple linear regression can be 
computed in closed form

– Matrix inversion is computationally intense

• In practice several techniques can help 
generate more robust models

– Outlier removal

– Feature scaling 

• Gradient descent is an efficient algorithm for 
optimization and training LR

– The most widely used algorithm in ML!
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Multiple Linear Regression

• Dataset: 𝑥
(𝑖)

∈ 𝑅𝑑 , 𝑦
𝑖
∈ 𝑅

• Hypothesis ℎ𝜃 𝑥 = 𝜃𝑇𝑥

• MSE =
1

𝑛
σ𝑖=1
𝑛 𝜃𝑇𝑥(𝑖) − 𝑦(𝑖)

2
loss / cost
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Outline

• Gradient Descent

– Derivation for simple and multiple Linear 
Regression 

– Issues with Gradient Descent

– Comparison with closed-form solution

• Regularization

– Ridge and Lasso regression

– Lab example
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How to optimize 𝐽(𝜃)? 
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Move in the direction of 
steepest descent



Gradient Descent
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Gradient = slope of line tangent 
to curve at the same point



Gradient Descent
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• What happens when 𝜃 reaches a local minimum?
• The slope is 0, and gradient descent converges!



Gradient Descent
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• As you approach the minimum, the slope gets smaller, and GD 
will take smaller steps

• It converges to local minimum (which is global minimum for 
convex functions)!



GD Converges to Local Minimum

Solution: start from multiple random locations
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GD for Simple Linear Regression

• 𝐽 𝜃 =
1

𝑛
σ𝑖=1
𝑛 𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖)
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•
𝜕𝐽(𝜃)

𝜕𝜃0
=

2

𝑛
σ𝑖=1
𝑛 (𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖))

•
𝜕𝐽(𝜃)

𝜕𝜃1
=

2

𝑛
σ𝑖=1
𝑛 (𝜃0 + 𝜃1𝑥

𝑖 − 𝑦(𝑖)) 𝑥(𝑖)
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Update of each parameter component 
depends on all training data



GD for Multiple Linear Regression

1

𝑛

1

𝑛

2

𝑛

2

𝑛
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GD for Linear Regression

2

𝑛

12

Can also bound number of iterations



GD Example
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GD Example
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GD Example
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GD Example
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GD Example
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GD Example
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GD Example
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GD Example
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GD Example
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Choosing learning rate
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Feature Scaling
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Gradient Descent vs Closed Form

Gradient 
Descent

Closed form
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Issues with Gradient Descent

• Might get stuck in local optimum and not 
converge to global optimum

– Restart from multiple initial points

• Only works with differentiable loss functions

• Small or large gradients

– Feature scaling helps

• Tune learning rate

– Can use line search for determining optimal 
learning rate
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Outline

• Gradient Descent

– Derivation for simple and multiple Linear 
Regression 

– Issues with Gradient Descent

– Comparison with closed-form solution

• Regularization

– Ridge and Lasso regression

– Lab example
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Generalization in ML

• Goal is to generalize well on new testing data

• Risk of overfitting to training data

– MSE close to 0, but performs poorly on test data
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Complex modelSimple model



Bias-Variance Tradeoff
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• Bias = Difference between estimated and true models
• Variance = Model difference on different training sets

MSE is proportional to Bias + Variance

Over-fittingUnder-fitting



Regularization
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Reduce model complexity
Reduce model variance



Ridge regression

λ
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• If λ = 0, we train linear regression
• If λ is large, the coefficients will shrink close to 0

1

2

λ

2



Bias-Variance Tradeoff
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Linear 
regression

Reduced model 
complexity

Optimal
Ridge regression

Ridge performs better when linear regression has high variance
• Example: d (dimension) is close to n (training set size)

VarianceBias

MSE



Coefficient shrinkage
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Predict credit card balance



GD for Ridge Regression

− 𝛼

− 𝛼

𝜃𝑗 ← 𝜃𝑗(1 − 𝛼𝜆) − 𝛼 ℎ𝜃 𝑥(𝑖) − 𝑦(𝑖) 𝑥𝑗
(𝑖)

−𝛼λ𝜃𝑗

1

2
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GD for Ridge Regression

− 𝛼

− 𝛼

𝜃𝑗 ← 𝜃𝑗(1 − 𝛼𝜆) − 𝛼 ℎ𝜃 𝑥(𝑖) − 𝑦(𝑖) 𝑥𝑗
(𝑖)

−𝛼λ𝜃𝑗

1

2
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Lasso regression

• L1 norm for regularization

• No closed form solution

• Algorithms based on quadratic programming 
or other optimization techniques

𝐽 𝜃 = 

𝑖=1

𝑛

ℎ𝜃 𝑥 𝑖 − 𝑦(𝑖)
2
+ 𝜆

𝑗=1

𝑑

|𝜃𝑗|

Squared 
Residuals

Regularization
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Alternative Formulations
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• Ridge

– L2 Regularization

– min
𝜃

σ𝑖=1
𝑛 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 2

subject to σ𝑗=1
𝑑 𝜃𝑗

2
≤ 𝜖

• Lasso

– L1 regularization

– min
𝜃

σ𝑖=1
𝑛 ℎ𝜃 𝑥 𝑖 − 𝑦(𝑖)

2
subject to σ𝑗=1

𝑑 𝜃𝑗 ≤ 𝜖



Lasso vs Ridge

• Ridge shrinks all coefficients

• Lasso sets some coefficients at 0 (sparse solution)

– Perform feature selection

Lasso Ridge

Optimum Optimum
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𝜃0 𝜃0

𝜃1𝜃1 መ𝜃 መ𝜃



Lasso vs Ridge
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Lab example
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Ridge regression
Data processing (omit N/A)

Fit ridge regression

Coefficient norm

Coefficient values
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Ridge regression
Fit ridge regression

Coefficient norm

Coefficient values
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λ controls parameter size



Lasso regression
Fit Lasso regression

13 coefficients set at zero

Coefficient norm
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