DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

September 20 2018

Review

 Solution for multiple linear regression can be computed in closed form

- Matrix inversion is computationally intense

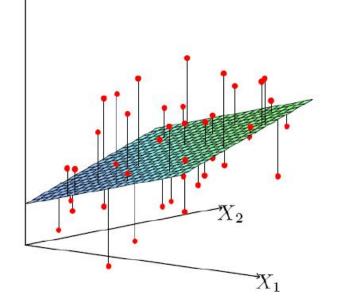
- In practice several techniques can help generate more robust models
 - Outlier removal
 - Feature scaling
- Gradient descent is an efficient algorithm for optimization and training LR

– The most widely used algorithm in ML!

Multiple Linear Regression

- Dataset: $x^{(i)} \in R^d$, $y^{(i)} \in R$
- Hypothesis $h_{\theta}(x) = \theta^T x$
- MSE = $\frac{1}{n} \sum_{i=1}^{n} (\theta^T x^{(i)} y^{(i)})^2 \log / \text{cost}$

$$\boldsymbol{\theta} = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$$



Outline

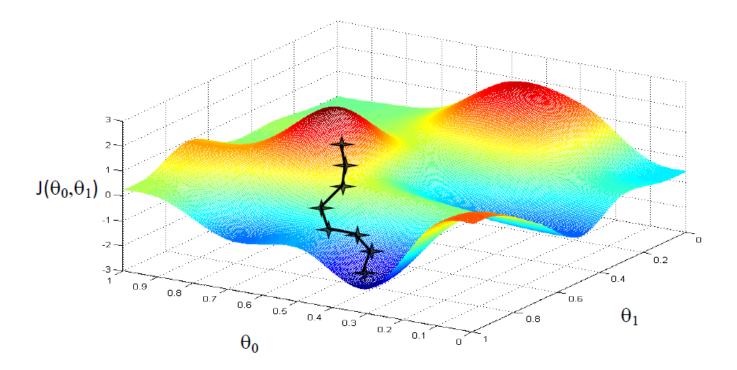
- Gradient Descent
 - Derivation for simple and multiple Linear Regression
 - Issues with Gradient Descent
 - Comparison with closed-form solution
- Regularization
 - Ridge and Lasso regression
 - Lab example

How to optimize $J(\theta)$?

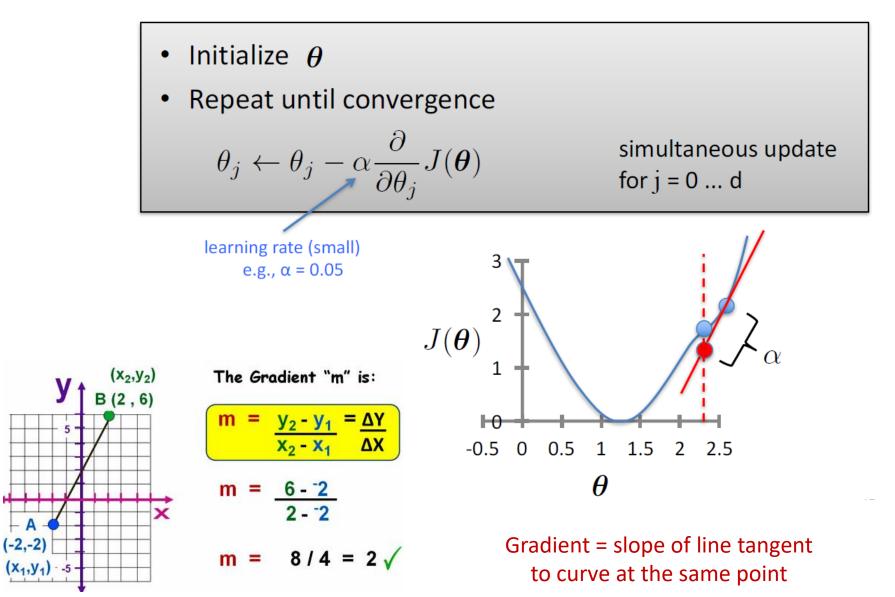
- Choose initial value for θ
- Until we reach a minimum:

– Choose a new value for $\boldsymbol{\theta}$ to reduce $J(\boldsymbol{\theta})$

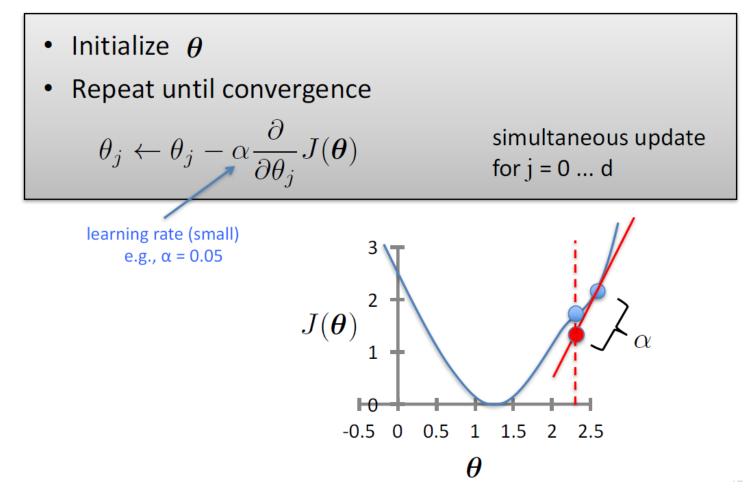
Move in the direction of steepest descent



Gradient Descent

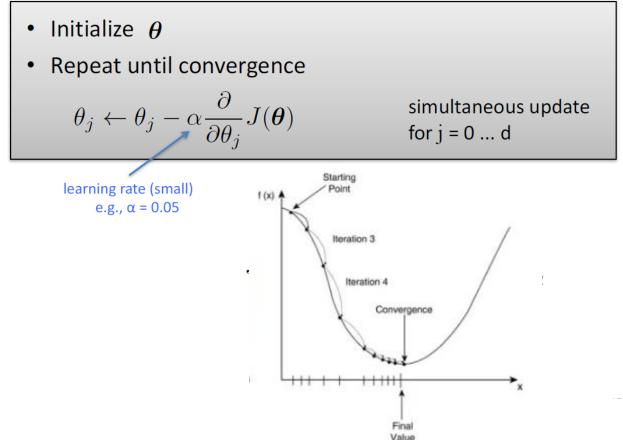


Gradient Descent



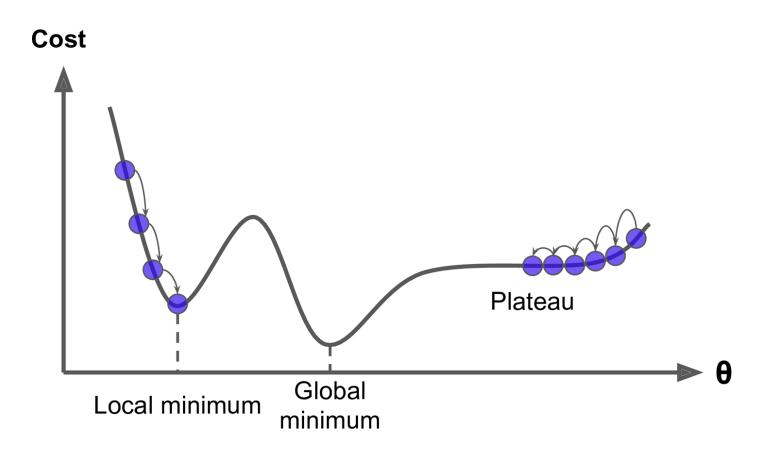
- What happens when θ reaches a local minimum?
- The slope is 0, and gradient descent converges!

Gradient Descent



- As you approach the minimum, the slope gets smaller, and GD will take smaller steps
- It converges to local minimum (which is global minimum for convex functions)!

GD Converges to Local Minimum



Solution: start from multiple random locations

GD for Simple Linear Regression

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for $j = 0 \dots d$

•
$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

•
$$\frac{\partial J(\theta)}{\partial \theta_0} = \frac{2}{n} \sum_{i=1}^n (\theta_0 + \theta_1 x^{(i)} - y^{(i)})$$

•
$$\frac{\partial J(\theta)}{\partial \theta_1} = \frac{2}{n} \sum_{i=1}^n (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) x^{(i)}$$

Update of each parameter component depends on all training data

GD for Multiple Linear Regression

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for $j = 0 \dots d$

For Linear Regression:
$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{n} \sum_{i=1}^n \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right)^2$$
$$= \frac{\partial}{\partial \theta_j} \frac{1}{n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right)^2$$
$$= \frac{2}{n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) \times \frac{\partial}{\partial \theta_j} \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right)$$
$$= \frac{2}{n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) x_j^{(i)}$$

GD for Linear Regression

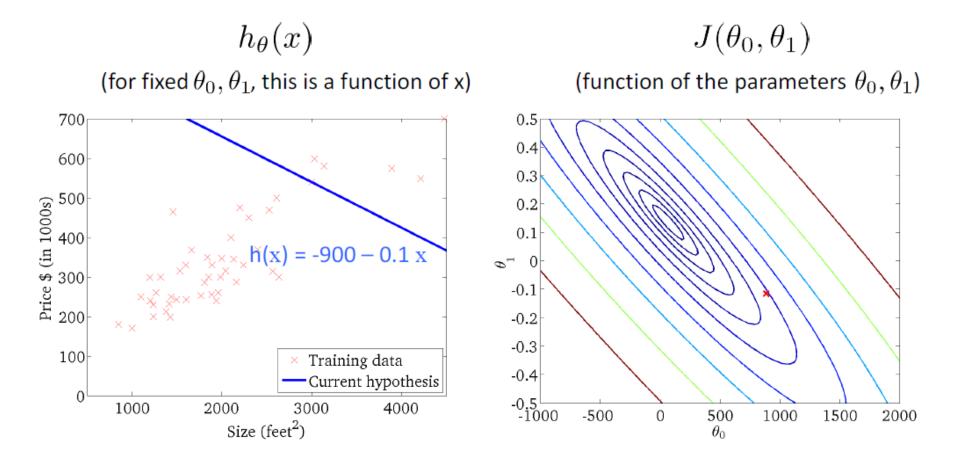
- Initialize θ
- Repeat until convergence

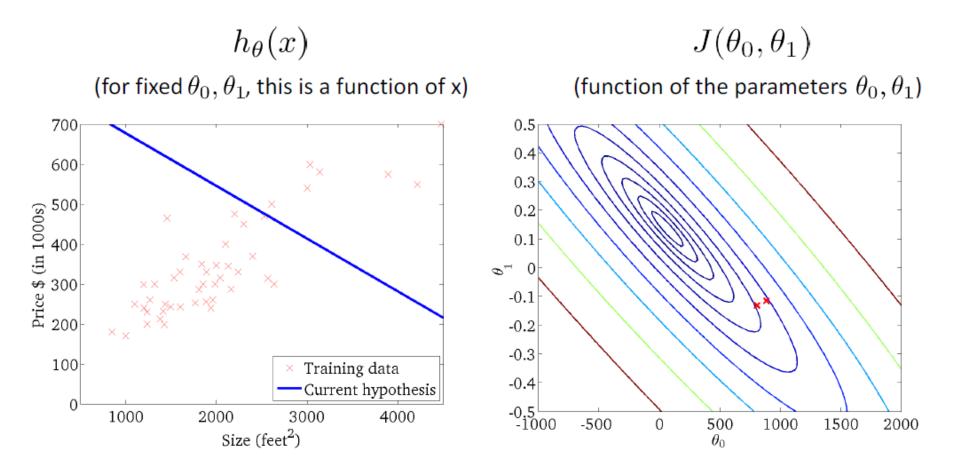
$$\theta_{j} \leftarrow \theta_{j} - \alpha \frac{2}{n} \sum_{i=1}^{n} \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)} \quad \substack{\text{simultaneous update} \\ \text{for } \mathbf{j} = \mathbf{0} \dots \mathbf{d}}$$

- To achieve simultaneous update
 - At the start of each GD iteration, compute $h_{m{ heta}}\left(m{x}^{(i)}
 ight)$
 - Use this stored value in the update step loop
- Assume convergence when $\| \boldsymbol{\theta}_{new} \boldsymbol{\theta}_{old} \|_2 < \epsilon$

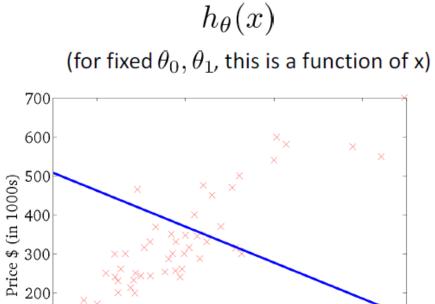
L₂ norm:
$$\|\boldsymbol{v}\|_2 = \sqrt{\sum_i v_i^2} = \sqrt{v_1^2 + v_2^2 + \ldots + v_{|v|}^2}$$

Can also bound number of iterations





 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed $heta_0, heta_1$, this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 х 0.3 × 500 Price \$ (in 1000s) 0.2 0.1400 θ_{1} 0 300 -0.1× 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) θ_0



Training data

3000

Size (feet²)

Current hypothesis

4000

200

100

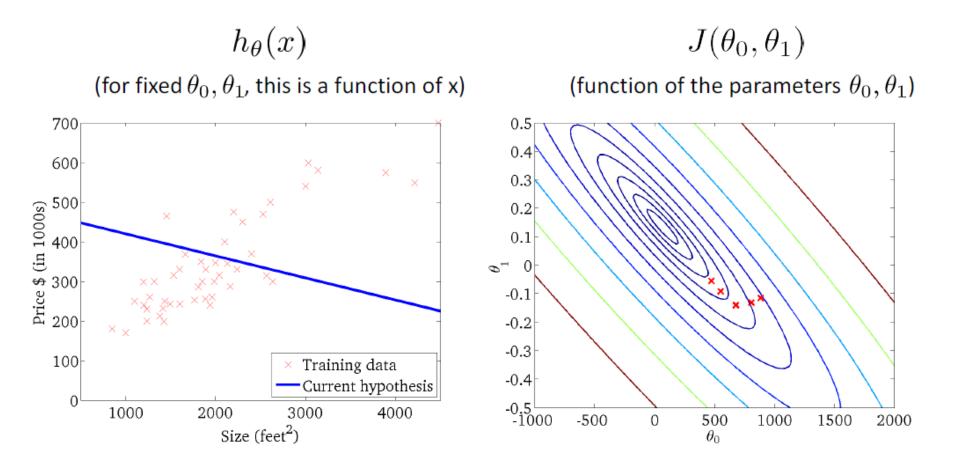
0

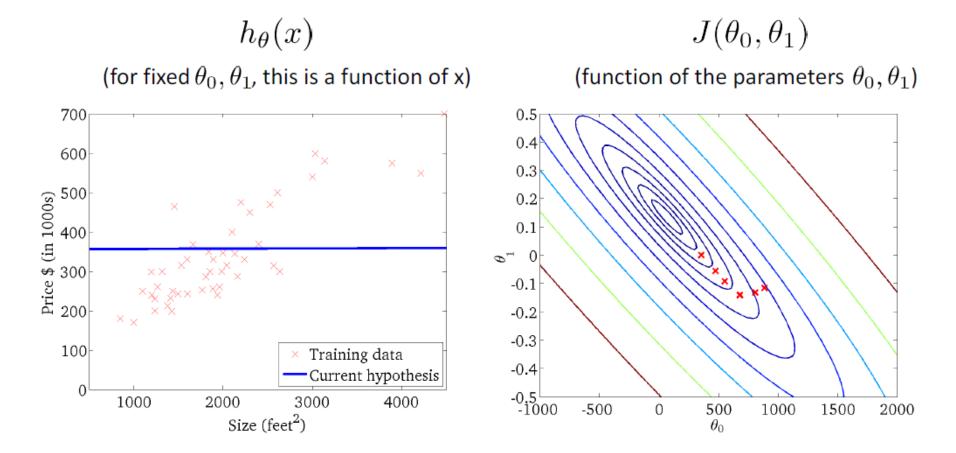
1000

2000

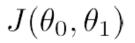
$$J(\theta_0, \theta_1)$$

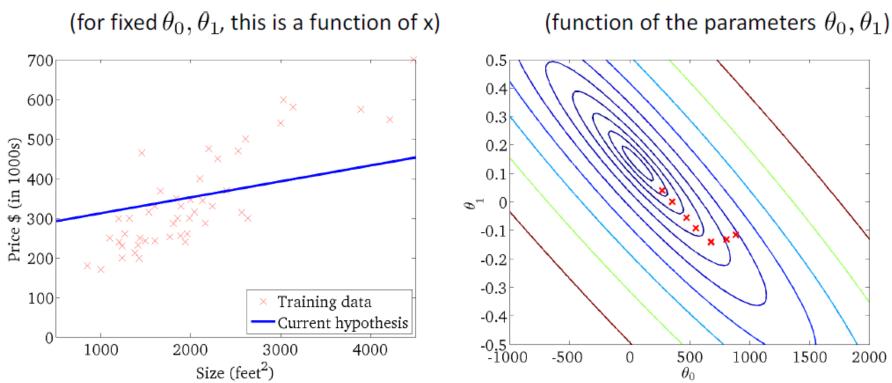
(function of the parameters θ_0, θ_1) 0.5 0.4 0.3 0.2 0.1 θ_{\perp} 0 -0.1-0.2 -0.3 -0.4 -0.5 -1000 -500 500 1000 0 1500 2000 θ_0

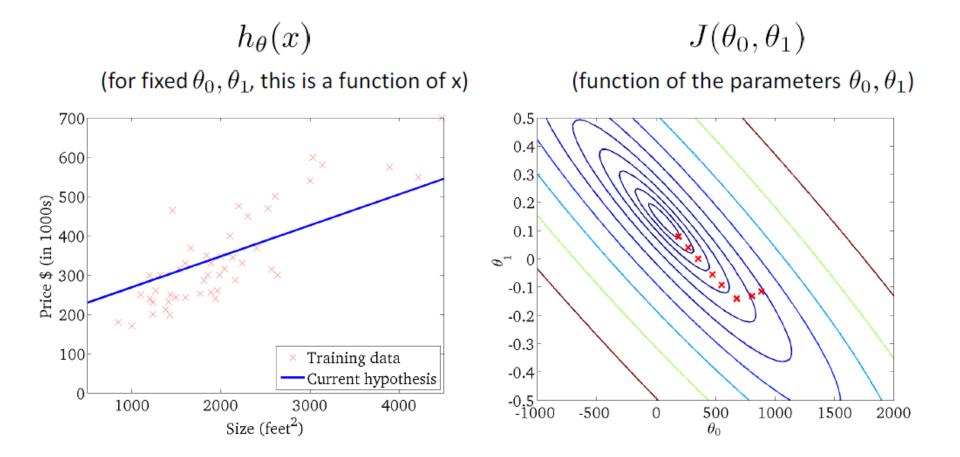




$$h_{\theta}(x)$$

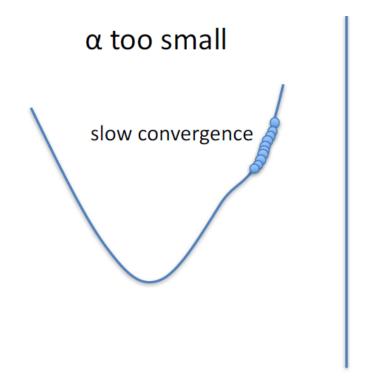


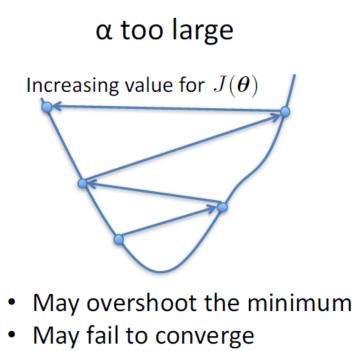




 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0, θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.50.4 600 0.3 500 Price \$ (in 1000s) 0.2 0.1400 $\boldsymbol{\theta}_1$ 0 300 -0.1200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) θ_0

Choosing learning rate





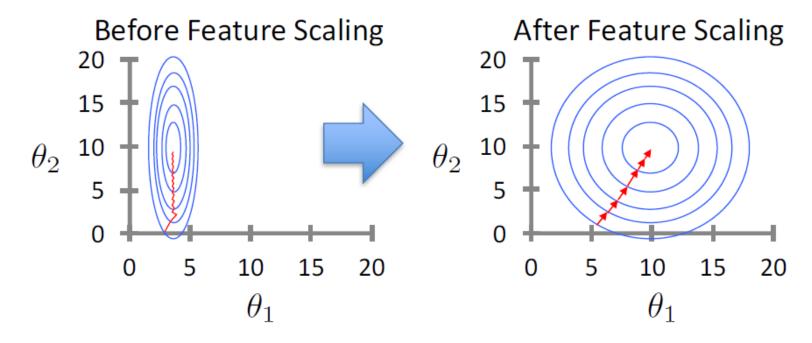
• May even diverge

To see if gradient descent is working, print out $J(\theta)$ each iteration

- The value should decrease at each iteration
- If it doesn't, adjust α

Feature Scaling

Idea: Ensure that feature have similar scales



Makes gradient descent converge much faster

Gradient Descent vs Closed Form

Gradient Descent

Initializa 0

Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for $j = 0 \dots d$

Closed form

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

Gradient Descent

- Requires multiple iterations
- Need to choose α
- Works well when n is large
- Can support incremental learning

Closed Form Solution

- Non-iterative
- No need for α
- Slow if n is large
 - Computing $(X^T X)^{-1}$ is roughly O(n³)

Issues with Gradient Descent

 Might get stuck in local optimum and not converge to global optimum

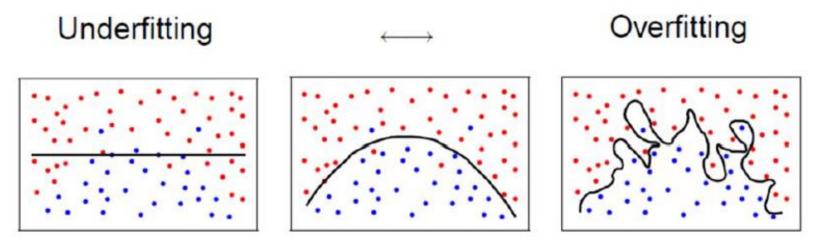
Restart from multiple initial points

- Only works with differentiable loss functions
- Small or large gradients
 Feature scaling helps
- Tune learning rate
 - Can use line search for determining optimal learning rate

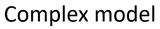
Outline

- Gradient Descent
 - Derivation for simple and multiple Linear Regression
 - Issues with Gradient Descent
 - Comparison with closed-form solution
- Regularization
 - Ridge and Lasso regression
 - Lab example

Generalization in ML



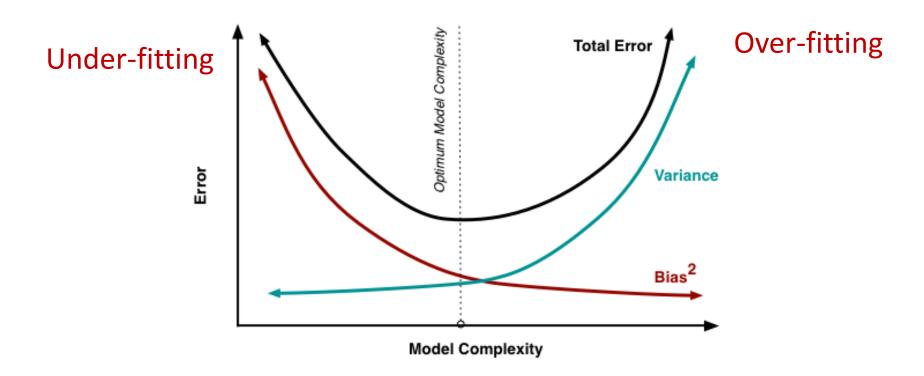
Simple model



- Goal is to generalize well on new testing data
- Risk of overfitting to training data

- MSE close to 0, but performs poorly on test data

Bias-Variance Tradeoff



- Bias = Difference between estimated and true models
- Variance = Model difference on different training sets
 MSE is proportional to Bias + Variance

Regularization

- A method for automatically controlling the complexity of the learned hypothesis
- Idea: penalize for large values of θ_j
 - Can incorporate into the cost function
 - Works well when we have a lot of features, each that contributes a bit to predicting the label
- Can also address overfitting by eliminating features (either manually or via model selection)

Reduce model complexity Reduce model variance

Ridge regression

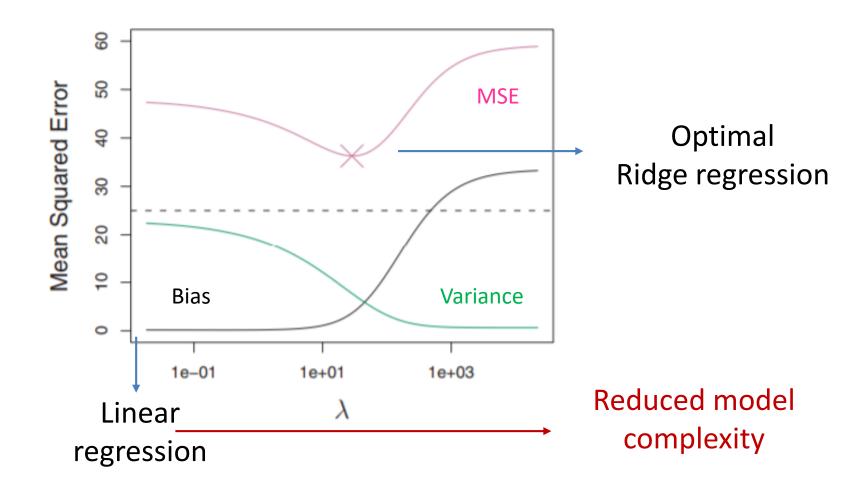
Linear regression objective function

$$J(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - \boldsymbol{y}^{(i)} \right)^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}$$

model fit to data regularization

- λ is the regularization parameter ($\lambda \ge 0$). No regularization on β
- No regularization on θ_0 !
 - If $\lambda = 0$, we train linear regression
 - If λ is large, the coefficients will shrink close to 0

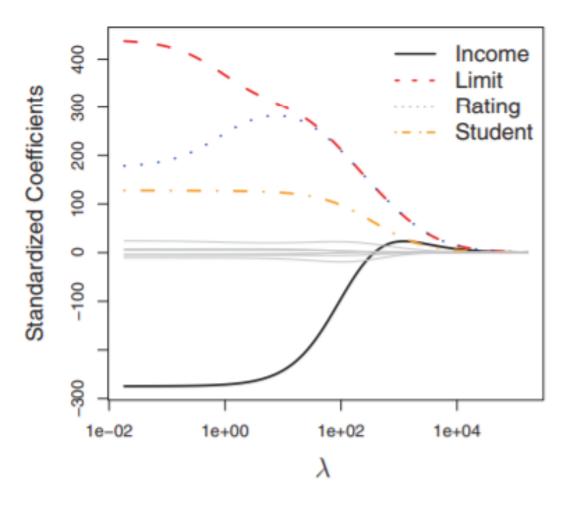
Bias-Variance Tradeoff



Ridge performs better when linear regression has high variance

• Example: d (dimension) is close to n (training set size)

Coefficient shrinkage



Predict credit card balance

GD for Ridge Regression

Cost Function

$$J(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$

- Fit by solving $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

GD for Ridge Regression

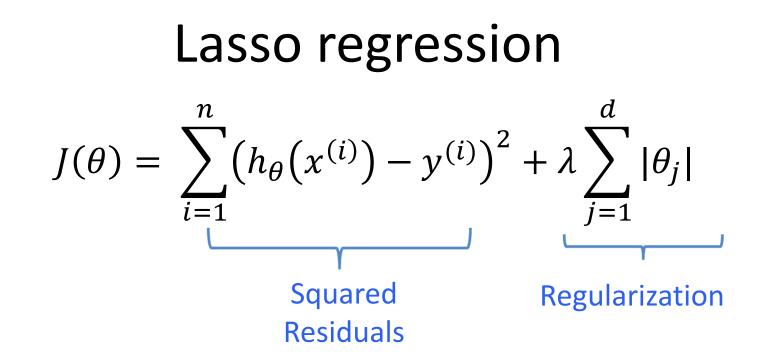
Cost Function

$$J(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$

- Fit by solving $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
- Gradient update:

$$\frac{\partial}{\partial \theta_{0}} J(\theta) \quad \theta_{0} \leftarrow \theta_{0} - \alpha \sum_{i=1}^{n} \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - \boldsymbol{y}^{(i)} \right)$$
$$\frac{\partial}{\partial \theta_{j}} J(\theta) \quad \theta_{j} \leftarrow \theta_{j} - \alpha \sum_{i=1}^{n} \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - \boldsymbol{y}^{(i)} \right) \boldsymbol{x}_{j}^{(i)} - \alpha \lambda \theta_{j}$$
regularization

 $\theta_j \leftarrow \theta_j (1 - \alpha \lambda) - \alpha \big(h_\theta \big(x^{(i)} \big) - y^{(i)} \big) x_j^{(i)}$



- L1 norm for regularization
- No closed form solution
- Algorithms based on quadratic programming or other optimization techniques

Alternative Formulations

- Ridge
 - L2 Regularization

$$-\min_{\theta} \sum_{i=1}^{n} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} \text{ subject to } \sum_{j=1}^{d} \left| \theta_{j} \right|^{2} \leq \epsilon$$

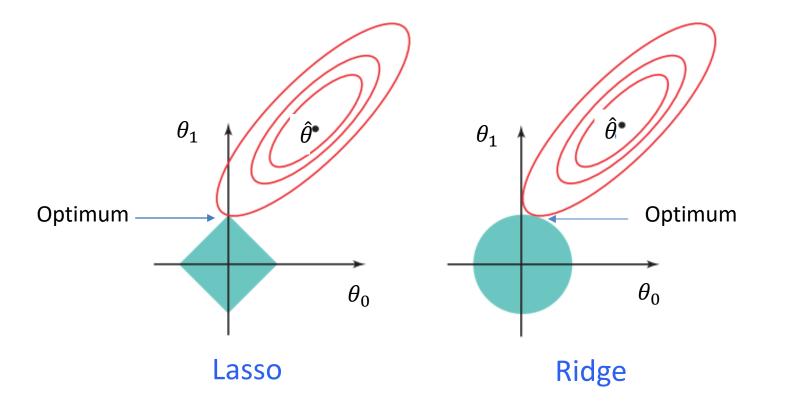
- Lasso
 - L1 regularization

$$-\min_{\theta} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} \text{ subject to } \sum_{j=1}^{d} \left| \theta_{j} \right| \leq \epsilon$$

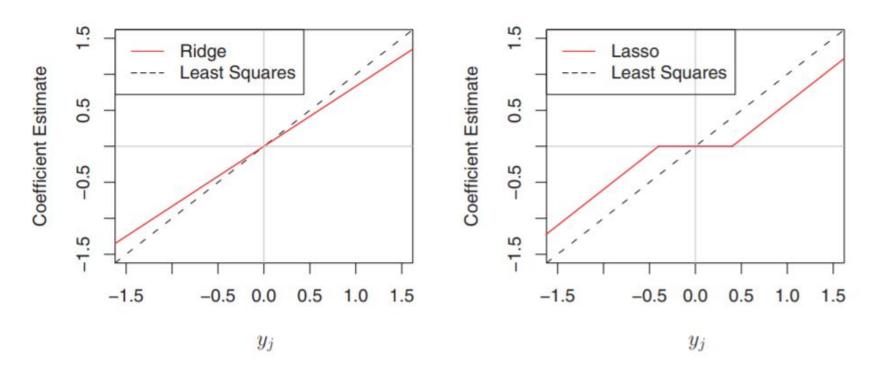
Lasso vs Ridge

- Ridge shrinks all coefficients
- Lasso sets some coefficients at 0 (sparse solution)

Perform feature selection



Lasso vs Ridge



Lab example

> library(ISLR)
> fix(Hitters)

🙀 Data Editor													
	Years	CAtBat	CHits	CHmRun	CRuns	CRBI	CWalks	League	Division	PutOuts	Assists	Errors	Salary
1	14	3449	835	69	321	414	375	N	W	632	43	10	475
2	3	1624	457	63	224	266	263	А	W	880	82	14	480
3	11	5628	1575	225	828	838	354	N	E	200	11	3	500
4	2	396	101	12	48	46	33	N	E	805	40	4	91.5
5	11	4408	1133	19	501	336	194	A	W	282	421	25	750
6	2	214	42	1	30	9	24	N	E	76	127	7	70
7	3	509	108	0	41	37	12	А	W	121	283	9	100
8	2	341	86	6	32	34	8	N	W	143	290	19	75
9	13	5206	1332	253	784	890	866	А	E	0	0	0	1100
10	10	4631	1300	90	702	504	488	А	E	238	445	22	517.143
11	9	1876	467	15	192	186	161	N	W	304	45	11	512.5
12	4	1512	392	41	205	204	203	N	E	211	11	7	550
13	6	1941	510	4	309	103	207	А	E	121	151	6	700

Ridge regression

<u> </u>				
	a.omit(Hitters)	Data processing (omit N/A)		
> x=model.m	atrix(Salary~.,Hitters)[,-1]	Fit ridge regression		
> y=Hitters	\$Salary	Fit ridge regression		
> ridge.mod	=glmnet(x,y,alpha=0,lambda=5000)			
> coef(ridg	e.mod)			
20 x 1 spar	se Matrix of class "dgCMatrix"			
	s0			
(Intercept)	305.016480230			
AtBat	0.065738413			
Hits	0.255494042			
HmRun	0.902148872			
Runs	0.419912564			
RBI	0.428768355			
Walks	0.533942922			
Years	1.892781352			
CAtBat	0.005532745			
CHits	0.020876841	Coefficient values		
CHmRun	0.156069996			
CRuns	0.041877748			
CRBI	0.043262917			
CWalks	0.043634641			
LeagueN	1.117728148			
DivisionW	-13.063063667			
PutOuts	0.033021805			
Assists	0.004993208			
Errors	-0.061932828			
NewLeagueN	1.269197088			
> sqrt(sum(<pre>coef(ridge.mod)[-1]^2))</pre>	Coefficient norm		
[1] 13.3660	2			

Ridge regression

<pre>> ridge.mod > coef(ridg</pre>	=glmnet(x,y,alpha=(e.mod)),lambda=50)	Fit ridge regression
	se Matrix of class	"dgCMatrix"	1
	sO	Line Contractory States	
(Intercept)	4.800582e+01		
AtBat	-3.532997e-01		
Hits	1.950804e+00		
HmRun	-1.286413e+00		
Runs	1.158693e+00		
RBI	8.114814e-01		
Walks	2.709241e+00		
Years	-6.179435e+00		
CAtBat	6.262426e-03		
CHits	1.072029e-01		
CHmRun	6.284707e-01		Coefficient values
CRuns	2.155421e-01		
CRBI	2.148524e-01		
CWalks	-1.483366e-01		
LeagueN	4.585236e+01		
DivisionW	-1.182395e+02		
PutOuts	2.501361e-01		
Assists	1.206414e-01		
Errors	-3.277654e+00		
NewLeagueN	-9.424451e+00		
> sqrt(sum(<pre>coef(ridge.mod)[-1]</pre>	Coefficient norm	
[1] 127.421	7		

λ controls parameter size

Lasso regression

> lasso.mod=	glmnet(x,y,alpha=1,lambda=	50) Fit Lasso regression
> coef(lass	.mod)	
20 x 1 spars	se Matrix of class "dgCMatr	ix"
	s0	
(Intercept)	88.6306382	
AtBat		
Hits	1.5877156	
HmRun		
Runs		
RBI		
Walks	1.8197051	
Years		
CAtBat		
CHits		
CHmRun		13 coefficients set at zero
CRuns	0.1711419	
CRBI	0.3709268	
CWalks		
LeagueN		
DivisionW	-43.3646551	
PutOuts	0.1341253	
Assists		
Errors		
NewLeagueN		
	<pre>coef(lasso.mod)[-1]^2))</pre>	Coefficient norm
[1] 43.43398	5	

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!