DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

September 18 2018

Logistics

- HW 1 is on Piazza and Gradescope
- Deadline: Friday, Sept. 28, 2018
- Office hours
 - Alina: Thu 4:30-6:00pm (ISEC 625)
 - Anand: Tue 2-3pm (ISEC 605)
- How to submit HW
 - Create a PDF and submit on Gradescope before
 11:59pm the day assignment is due
 - Include link to code and ReadMe file
 - Use Jupyter notebook in R or Python

Collaboration policy

- What is allowed
 - You can discuss the homework with your colleagues
 - You can post questions on Piazza and come to office hours
 - You can search for online resources to better understand class concepts
- What is not allowed
 - Sharing your written answers with colleagues
 - Sharing your code or receiving code from colleague
 - Do not use code from the Internet!

Linear regression

Given:

- Data
$$X = \left\{ x^{(1)}, \dots, x^{(n)} \right\}$$
 where $x^{(i)} \in \mathbb{R}^d$ Features
- Corresponding labels $y = \left\{ y^{(1)}, \dots, y^{(n)} \right\}$ where $y^{(i)} \in \mathbb{R}$

Response variables

Simple linear regression

- Dataset $x^{(i)} \in R, y^{(i)} \in R, h_{\theta}(x) = \theta_0 + \theta_1 x$
- $J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(\theta_0 + \theta_1 x^{(i)} y^{(i)}\right)^2 \text{ loss}$ $\frac{\partial J(\theta)}{\partial \theta_0} = \frac{2}{n} \sum_{i=1}^{n} \left(\theta_0 + \theta_1 x^{(i)} y^{(i)}\right) = 0$ $\frac{\partial J(\theta)}{\partial \theta_1} = \frac{2}{n} \sum_{i=1}^{n} x^{(i)} \left(\theta_0 + \theta_1 x^{(i)} y^{(i)}\right) = 0$
- Solution of min loss

$$-\theta_0 = \overline{y} - \theta_1 \,\overline{x}$$
$$-\theta_1 = \frac{\sum (x^{(i)} - \overline{x})(y^{(i)} - \overline{y})}{\sum (x^{(i)} - \overline{x})^2}$$

$$\bar{x} = \frac{\sum_{i=1}^{n} x^{(i)}}{n}$$
$$\bar{y} = \frac{\sum_{i=1}^{n} y^{(i)}}{n}$$

Regression Learning

Training

Outline

- Multiple linear regression
 - Derivation in matrix form
- Practical issues
 - Feature scaling and normalization
 - Outliers
 - Categorical variables
- Gradient descent
 - Efficient algorithm for optimizing loss function
 - Training LR with Gradient Descent

Multiple Linear Regression

• Dataset: $x^{(i)} \in \mathbb{R}^d$, $y^{(i)} \in \mathbb{R}$

Use Vectorization

- Benefits of vectorization
 - More compact equations
 - Faster code (using optimized matrix libraries)
- Consider our model:

$$h(\boldsymbol{x}) = \sum_{j=0}^{n} \theta_j x_j$$

d

Let

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} \qquad \boldsymbol{x}^{\mathsf{T}} = \begin{bmatrix} 1 & x_1 & \dots & x_d \end{bmatrix}$$

• Can write the model in vectorized form as $h(\boldsymbol{x}) = \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}$

Use Vectorization

• Consider our model for n instances:

$$h\left(\boldsymbol{x}^{(i)}\right) = \sum_{j=0}^{d} \theta_{j} x_{j}^{(i)} = \theta^{T} \boldsymbol{x}^{(i)}$$
• Let
$$\boldsymbol{\theta} = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{d} \end{bmatrix} \quad \boldsymbol{X} = \begin{bmatrix} 1 & x_{1}^{(1)} & \dots & x_{d}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1}^{(i)} & \dots & x_{d}^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1}^{(n)} & \dots & x_{d}^{(n)} \end{bmatrix}$$

$$\mathbb{R}^{(d+1)\times 1} \qquad \mathbb{R}^{n\times (d+1)}$$

• Can write the model in vectorized form as $\ h_{m{ heta}}(m{x}) = m{X}m{ heta}$

Loss function

• For the linear regression cost function:

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left(\boldsymbol{\theta} \mathbf{T} \boldsymbol{x}^{(i)} - y^{(i)} \right)^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)} \right)^2$$

Let:

$$\boldsymbol{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

$$=\frac{1}{n}\left|\left|X\theta-y\right|\right|^2$$

Euclidian Norm
$$||x||_2 =$$

 $\sum_{i=1}^{n} x_i^2$

Matrix and vector gradients

If $y = f(x), y \in R$ scalar, $x \in R^n$ vector

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \frac{\partial y}{\partial x_2} & \dots & \frac{\partial y}{\partial x_n} \end{bmatrix}$$

If
$$y = f(x), y \in \mathbb{R}^m, x \in \mathbb{R}^n$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$
Jacobian

Properties

- If w, x are($d \times 1$) vectors, $\frac{\partial w^T x}{\partial x} = w$
- If A: $(n \times d) x$: $(d \times 1)$, $\frac{\partial Ax}{\partial x} = A$
- If A: $(d \times d) x$: $(d \times 1)$, $\frac{\partial x^T A x}{\partial x} = (A + A^T) x$
- If A symmetric: $\frac{\partial x^T A x}{\partial x} = 2Ax$
- If $x: (d \times 1)$, $\frac{\partial ||x||^2}{\partial x} = 2x^T$

Min loss function

– Notice that the solution is when $\frac{\partial}{\partial \theta} J(\theta) = 0$

$$J(\theta) = \frac{1}{n} \left| |X\theta - y| \right|^2$$

Using chain rule $f(\theta) = h(g(\theta)), \frac{\partial f(\theta)}{\partial \theta} = \frac{\partial h(g(\theta))}{\partial \theta} \frac{\partial g(\theta)}{\partial \theta}$ $h(x) = ||x||^2, g(\theta) = X\theta - y$ $h'(x) = 2x^T, g'(\theta) = X$ $\frac{\partial J(\theta)}{\partial \theta} = \frac{2}{n} [(X \theta - y)^T X] = 0 \Rightarrow X^T (X \theta - y) = 0$ Closed Form Solution: $\theta = (X^T X)^{-1} X^T y$

Closed-form solution

• Can obtain θ by simply plugging X and y into

$$\boldsymbol{\theta} = (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

$$X = \begin{bmatrix} 1 & x_1^{(1)} & \dots & x_d^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(i)} & \dots & x_d^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(n)} & \dots & x_d^{(n)} \end{bmatrix} \qquad \boldsymbol{y} = \begin{bmatrix} \boldsymbol{y}^{(1)} \\ \boldsymbol{y}^{(2)} \\ \vdots \\ \boldsymbol{y}^{(n)} \end{bmatrix}$$

- If $X^{\mathsf{T}}X$ is not invertible (i.e., singular), may need to:
 - Use pseudo-inverse instead of the inverse

AGA = A

- In python, numpy.linalg.pinv(a)
- Remove redundant (not linearly independent) features
- Remove extra features to ensure that $d \leq n$

Multiple Linear Regression

- Dataset: $x^{(i)} \in R^d$, $y^{(i)} \in R$
- Hypothesis $h_{\theta}(x) = \theta^T x$
- MSE = $\frac{1}{n} \sum_{i=1}^{n} (\theta^T x^{(i)} y^{(i)})^2 \log / \text{cost}$

 $\boldsymbol{\theta} = (\boldsymbol{X}^{\intercal}\boldsymbol{X})^{-1}\boldsymbol{X}^{\intercal}\boldsymbol{y}$

Regression Learning

Testing

Feature Standardization

Rescales features to have zero mean and unit variance

- Let μ_j be the mean of feature j: $\mu_j = \frac{1}{n} \sum_{i=1}^n x_j^{(i)}$

– Replace each value with:

$$x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{s_j} \qquad \text{for } j = 1...d$$
(not x_0 !)

• s_i is the standard deviation of feature j

- Must apply the same transformation to instances for both training and prediction
- Outliers can cause problems

Other feature normalization

• Re-scaling

$$-x_j^{(i)} \leftarrow \frac{x_j^{(i)} - min_j}{max_j - min_j} \in [0, 1]$$

- min_j and max_j : min and max value of feature j

Mean normalization

$$-x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{max_j - min_j}$$
$$- \text{Mean 0}$$

Outliers

- Dashed model is without outlier point
- Linear regression is not resilient to outliers!
- Outliers can be eliminated based on residual value
 - Other techniques for outlier detection

Categorical variables

- Predict credit card balance
 - Age
 - Income
 - Number of cards
 - Credit limit
 - Credit rating
- Categorical variables
 - Student (Yes/No)
 - State (50 different levels)

Indicator Variables

Binary (two-level) variable

- Add new feature $x_j = 1$ if student and 0 otherwise

Multi-level variable

– State: 50 values

- $-x_{MA} = 1$ if State = MA and 0, otherwise
- $-x_{NY} = 1$ if State = NY and 0, otherwise

— ...

- How many indicator variables are needed?

 Disadvantages: data becomes too sparse for large number of levels

Comparison with ANOVA

- ANOVA
 - General statistical method for comparing populations
 - Example 1: Is the income of MA and NY residents similar?
 - Example 2: Is there any difference between patients with certain treatment or no treatment?
- Linear regression
 - Learning algorithm used for predicting responses on new data
 - Example 1: Predict the income of US residents
 - Example 2: Predict survival of patients
 - Hypothesis testing for coefficient equal to zero is similar to ANOVA

Outline

- Multiple linear regression
 - Derivation in matrix form
- Practical issues
 - Feature scaling and normalization
 - Outliers
 - Categorical variables
- Gradient descent
 - Efficient algorithm for optimizing loss function
 - Training LR with Gradient Descent

What Strategy to Use?

Follow the Slope

Follow the direction of steepest descent!

How to optimize $J(\theta)$?

- Choose initial value for θ
- Until we reach a minimum:

– Choose a new value for $\boldsymbol{\theta}$ to reduce $J(\boldsymbol{\theta})$

How to optimize $J(\theta)$?

- Choose initial value for θ
- Until we reach a minimum:

– Choose a new value for ${\ensuremath{\boldsymbol{\theta}}}$ to reduce $\,J({\ensuremath{\boldsymbol{\theta}}})$

Different starting point

Gradient Descent

(-2, -2)

Gradient Descent

- What happens when θ reaches a local minimum?
- The slope is 0, and gradient descent converges!

Review

- Solution for multiple linear regression can be computed in closed form
 - Matrix inversion is computationally intense
- Gradient descent is an efficient algorithm for optimization and training LR
 - The most widely used algorithm in ML!
 - Many variants (SGD, Coordinate descent, etc.)
 - Converges if objective is convex
- In practice several techniques can help generate more robust models
 - Outlier removal
 - Feature scaling

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!