DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor, CCIS
Northeastern University

Review

- Probability review
- Random variables
- Expectation, Variance, CDF, PDF
- Example distributions
- Independence and conditional independence
- Bayes' Theorem
- Linear algebra review
- Matrix, vectors
- Inner products
- Norms
- Distance

Resources

Probability

- Review notes from Stanford's machine learning class
- Sam Roweis's probability review

Linear algebra

- Review notes from Stanford's machine learning class
- Sam Roweis's linear algebra review

Vectors and matrices

- Vector in R^{n} is an ordered set of n real numbers.
- e.g. $v=(1,6,3,4)$ is in R^{4}
- A column vector:
- A row vector:

$$
\left(\begin{array}{ccc}
1 & 2 & 8 \\
4 & 78 & 6 \\
9 & 3 & 2
\end{array}\right)
$$

Matrix multiplication

We will use upper case letters for matrices. The elements are referred by $\mathrm{A}_{\mathrm{i}, \mathrm{j}}$.

- Matrix product:

$$
\begin{gathered}
A \in \mathbb{R}^{m \times n} \quad B \in \mathbb{R}^{n \times p} \\
C=A B \in \mathbb{R}^{m \times p} \\
C_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
\end{gathered}
$$

e.g.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \\
& A B=\left(\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right)
\end{aligned}
$$

Matrix transpose

Transpose: You can think of it as

- "flipping" the rows and columns

OR

- "reflecting" vector/matrix on line
e.g. $\binom{a}{b}^{T}=\left(\begin{array}{ll}a & b\end{array}\right) \quad \bullet\left(A^{T}\right)^{T}=A$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{T}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) \quad \text { • }(A B)^{T}=B^{T} A^{T}, ~(A+B)^{T}=A^{T}+B^{T}
$$

A is a symmetric matrix if $A=A^{T}$

Linear independence

- A set of vectors is linearly independent if none of them can be written as a linear combination of the others.
- Vectors $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ are linearly independent if $\mathrm{c}_{1} \mathrm{v}_{1}+\ldots+\mathrm{c}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}=0$ implies $\mathrm{c}_{1}=\ldots=\mathrm{c}_{\mathrm{k}}=0$
- Otherwise they are linearly dependent

$$
\left(\begin{array}{ccc}
\mid & \mid & \mid \\
v_{1} & v_{2} & v_{3} \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

e.g. $\quad\left(\begin{array}{ll}1 & 0 \\ 2 & 3 \\ 1 & 3\end{array}\right)\binom{u}{v}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
$(u, v)=(0,0)$, i.e. the columns are linearly independent.

$$
x_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad x_{2}=\left[\begin{array}{l}
4 \\
1 \\
5
\end{array}\right] \quad x_{3}=\left[\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right]
$$

Linearly dependent

$$
x_{3}=-2 x_{1}+x_{2}
$$

Inverse of a matrix

- Inverse of a square matrix A, denoted by A^{-1} is the unique matrix s.t.
$-A A^{-1}=A^{-1} A=1$ (identity matrix)
- If A^{-1} and B^{-1} exist, then
$-(A B)^{-1}=B^{-1} A^{-1}$,
$-\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$
- For orthonormal matrices $\quad \mathbf{A}^{-1}=\mathbf{A}^{\top}$
- For diagonal matrices $\mathbf{D}^{-1}=\operatorname{diag}\left\{d_{1}^{-1}, \ldots, d_{n}^{-1}\right\}$

Rank of a Matrix

- $\operatorname{rank}(A)$ (the rank of a m-by-n matrix A) is

The maximal number of linearly independent columns
The maximal number of linearly independent rows

- If A is n by m, then
$-\operatorname{rank}(A)<=\min (m, n)$
- Examples

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right) \quad\left(\begin{array}{lll}
2 & 1 & 3 \\
0 & 5 & 2
\end{array}\right)
$$

System of linear equations

$$
\begin{aligned}
4 x_{1}-5 x_{2} & =-13 \\
-2 x_{1}+3 x_{2} & =9
\end{aligned}
$$

Matrix formulation

$$
\begin{gathered}
A x=b \\
A=\left[\begin{array}{cc}
4 & -5 \\
-2 & 3
\end{array}\right], \quad b=\left[\begin{array}{c}
-13 \\
9
\end{array}\right] .
\end{gathered}
$$

If A has an inverse, solution is $x=A^{-1} b$

Linear regression

- One of the most widely used techniques
- Fundamental to many complex models
- Generalized Linear Models
- Logistic regression
- Neural networks
- Deep learning
- Easy to understand and interpret
- Efficient to solve in closed form
- Efficient practical algorithm (gradient descent)

Supervised Learning: Overview

Hypothesis Functions \mathcal{F}
space
$f: \mathcal{X} \rightarrow \mathcal{Y}$

Training data

$$
\left\{\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}\right\}
$$

LEARNING

PREDICTION

New data $y=\hat{f}(x) \hookleftarrow x$

Training

Testing

Linear regression

Given:

- Data $\boldsymbol{X}=\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}\right\}$ where $\boldsymbol{x}^{(i)} \in \mathbb{R}^{d}$

Features

- Corresponding labels $\boldsymbol{y}=\left\{y^{(1)}, \ldots, y^{(n)}\right\}$ where $y^{(i)} \in \mathbb{R}$

Response variables

Hypothesis: linear model

- Hypothesis: $h_{\theta}(x)=\theta_{0}+\theta_{1} x$

Simple linear regression
Regression model is a line with 2 parameters: θ_{0}, θ_{1}

- Fit model by minimizing sum of squared errors

Least squares Linear Regression

- Cost Function

$$
J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

Mean Square Error (MSE)

- Fit by solving $\min _{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

Terminology and Metrics

- Residuals
- Difference between predicted values and actual values values
- Predicted value for example i is: $\hat{y}^{(i)}=h_{\theta}\left(x^{(i)}\right)$
$-R^{(i)}=\left|y^{(i)}-\hat{y}^{(i)}\right|=\left|y^{(i)}-\left(\theta_{0}+\theta_{1} x^{(i)}\right)\right|$
- Residual Sum of Squares (RSS)
$-R S S=\sum R^{(i)}=\Sigma\left[y^{(i)}-\left(\theta_{0}+\theta_{1} x^{(i)}\right)\right]^{2}$
- Residual Standard Error (RSE)
$-R S E=\sqrt{\frac{R S S}{n-2}}$
$-R S E^{2}$ is a measure of variance of the model

Interpretation

Intuition on MSE

$$
J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

For insight on J() , let's assume $x \in \mathbb{R}$ so $\boldsymbol{\theta}=\left[\theta_{0}, \theta_{1}\right]$

$$
h_{\theta}(x)
$$

$$
J\left(\theta_{1}\right)
$$

(function of the parameter θ_{1})

Fix $\theta_{0}=0$

Intuition on cost function

$$
J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

For insight on J() , let's assume $x \in \mathbb{R}$ so $\boldsymbol{\theta}=\left[\theta_{0}, \theta_{1}\right]$

$$
h_{\theta}(x)
$$

$$
J\left(\theta_{1}\right)
$$

(function of the parameter θ_{1})

$$
J([0,0.5])=\frac{1}{2 \times 3}\left[(0.5-1)^{2}+(1-2)^{2}+(1.5-3)^{2}\right] \approx 0.58
$$

Intuition on cost function

$$
J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\boldsymbol{\theta}=\left[\theta_{0}, \theta_{1}\right]$

$$
h_{\theta}(x)
$$

Based on example
by Andrew Ng

Cost function

Relation between h and J

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Relation between h and J

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Relation between h and J

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$J\left(\theta_{0}, \theta_{1}\right)$
(function of the parameters θ_{0}, θ_{1})

Relation between h and J

$h_{\theta}(x)$
(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

How to find optimal model parameters θ to minimize cost J ?

Simple linear regression

- Dataset $x^{(i)} \in R, y^{(i)} \in R, h_{\theta}(x)=\theta_{0}+\theta_{1} x$
- $J(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left(\theta_{0}+\theta_{1} x^{(i)}-y^{(i)}\right)^{2}$ loss

$$
\frac{\partial J(\theta)}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\theta_{0}+\theta_{1} x^{(i)}-y^{(i)}\right)=0
$$

$$
\frac{\partial J(\theta)}{\partial \theta_{1}}=\frac{2}{n} \sum_{i=1}^{n} x^{(i)}\left(\theta_{0}+\theta_{1} x^{(i)}-y^{(i)}\right)=0
$$

- Solution of min loss

$$
\begin{aligned}
& -\theta_{0}=\bar{y}-\theta_{1} \bar{x} \\
& -\theta_{1}=\frac{\sum\left(x^{(i)}-\bar{x}\right)\left(y^{(i)}-\bar{y}\right)}{\sum\left(x^{(i)}-\bar{x}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}=\frac{\sum_{i=1}^{n} x^{(i)}}{n} \\
& \bar{y}=\frac{\sum_{i=1}^{n} y^{(i)}}{n}
\end{aligned}
$$

Hypothesis Testing

- Is there some relationship between X and Y ?
- Null Hypothesis: No relationship between X and Y
- Equivalent to $\theta_{1}=0$
- Alternative Hypothesis: There is relationship between X and Y
- Equivalent to $\theta_{1} \neq 0$

Reject Null Hypothesis

Hypothesis Testing

A p-value (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

- If the p value is very small, the null hypothesis can be rejected!
- If the p value is large, we cannot say anything about the null hypothesis (whether it's true or not)

How Well Does the Model Fit?

- Residual Sum of Squares

$$
-R S S=\sum R^{(i)}=\sum\left[y^{(i)}-\left(\theta_{0}+\theta_{1} x^{(i)}\right)\right]^{2}
$$

- Total Sum of Squares
$-T S S=\Sigma\left[y^{(i)}-\bar{y}\right]^{2}$
- Total variance of the response
- Proportion of variability in Y that can be explained using X
$-R^{2}=1-\frac{R S S}{T S S} \in[0,1]$
- Correlation between feature and response

$$
\operatorname{Cor}(X, Y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}},
$$

For simple regression R^{2} is equal to $\operatorname{Cor}(\mathrm{X}, \mathrm{Y})$!

Lab example

library (MA.SS)

$>$ fix(Boston)

R Data Editor

- 回 \lesssim

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	1stat	medv
1	0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
2	0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
3	0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
4	0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
5	0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2
6	0.02985	0	2.18	0	0.458	6.43	58.7	6.0622	3	222	18.7	394.12	5.21	28.7
7	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9
8	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311	15.2	396.9	19.15	27.1
9	0.21124	12.5	7.87	0	0.524	5.631	100	6.0821	5	311	15.2	386.63	29.93	16.5
10	0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311	15.2	386.71	17.1	18.9
11	0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15
12	0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5	311	15.2	396.9	13.27	18.9
13	0.09378	12.5	7.87	0	0.524	5.889	39	5.4509	5	311	15.2	390.5	15.71	21.7
14	0.62976	0	8.14	0	0.538	5.949	61.8	4.7075	4	307	21	396.9	8.26	20.4
15	0.63796	0	8.14	0	0.538	6.096	84.5	4.4619	4	307	21	380.02	10.26	18.2
16	0.62739	0	14	0	. 538	834	56	4986	4	307	21	395.62	8.47	19.9

Simple LR

```
> lm.fit=lm(medv~lstat,data=Boston)
> plot(lstat,medv, pch=20)
> abline(lm.fit,lwd=3,col="red")
I
```


Residual plot

```
> plot(predict(lm.fit), residuals(lm.fit))
```

> plot(lm.fit, which=1)

Estimated responses

Simple LR

```
> lm.fit=lm(medv~lstat,data=Boston)
> summary(lm.fit)
Call:
lm(formula \(=\) medv \(\sim\) lstat, data \(=\) Boston)
```

Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-15.168	-3.990	-1.318	2.034	24.500

Coef not zero!

Coefficients:

$\operatorname{Pr}(>\|t\|)$
$<2 e-16_{* * *}$
$<2 e-16_{* * *}$


```
Residual standard error: 6.216 on 504 degrees of freedom
Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
```

F-statistic: bul. on 1 and 504 DF, p-value: $<2.2 E-16$

$$
R S E=\sqrt{M S E}
$$

R^{2} measures linear relationship between X and Y

Multiple LR

```
\(>\) lm.fit=lm(medv~nox+rm+lstat+ptratio+rad+dis,data=Boston)
\(>\) summary(lm.fit)
```

Call:
lm(formula $=$ medv \sim nox $+r m+$ lstat + ptratio + rad + dis, $d \$$

Residuals:

Min	$1 Q$	Median	$3 Q$	Max

$\begin{array}{lllll}-12.8663 & -3.1525 & -0.5509 & 1.9870 & 27.1748\end{array}$

Coefficients:
Estimate Std. Error t value Pr (>|t|)

| (Intercept) | 40.61722 | 5.07480 | 8.004 | $8.53 \mathrm{e}-15 * * *$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| nox | -20.16431 | 3.57710 | -5.637 | $2.90 \mathrm{e}-08 * * *$ |
| rm | 4.04507 | 0.41938 | 9.645 | $<2 \mathrm{e}-16 \star * *$ |
| lstat | -0.59197 | 0.04846 | -12.217 | $<2 \mathrm{e}-16 \star * *$ |
| ptratio | -1.12748 | 0.12634 | -8.924 | $<2 \mathrm{e}-16 \star * *$ |
| rad | 0.05399 | 0.03682 | 1.466 | 0.143 |
| dis | -1.19580 | 0.16840 | -7.101 | $4.29 e-12 * * *$ |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.988 on 499 degrees of freedom Multiple R-squared: 0.7093 , Adjusted R-squared: 0.7058

Review linear regression

- Simple linear regression: one dimension
- Multiple linear regression: multiple dimensions
- Minimize cost (loss) function
- MSE: average of squared residuals
- Can derive closed-form solution
$-\theta_{0}=\bar{y}-\theta_{1} \bar{x}$
$-\theta_{1}=\frac{\sum\left(x^{(i)}-\bar{x}\right)\left(y^{(i)}-\bar{y}\right)}{\sum\left(x^{(i)}-\bar{x}\right)^{2}}$

Acknowledgements

- Slides made using resources from:
- Andrew Ng
- Eric Eaton
- David Sontag
- Thanks!

