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Review

• Probability review
– Random variables

– Expectation, Variance, CDF, PDF

– Example distributions 

– Independence and conditional independence

– Bayes’ Theorem

• Linear algebra review
– Matrix, vectors

– Inner products

– Norms

– Distance
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Resources

Probability

• Review notes from Stanford's machine 
learning class

• Sam Roweis's probability review

Linear algebra

• Review notes from Stanford's machine 
learning class

• Sam Roweis's linear algebra review
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http://cs229.stanford.edu/section/cs229-linalg.pdf
http://cs.nyu.edu/~dsontag/courses/ml12/notes/probx.pdf
http://cs229.stanford.edu/section/cs229-prob.pdf
http://cs.nyu.edu/~dsontag/courses/ml12/notes/linear_algebra.pdf


Vectors and matrices

• Vector in Rn is an ordered 
set of n real numbers.

– e.g. v = (1,6,3,4) is in R4

– A column vector:

– A row vector:

• m-by-n matrix is an object 
in Rmxn with m rows and n 
columns, each entry filled 
with a (typically) real 
number:





















4

3

6

1

( )4361

















239

6784

821

4



Matrix multiplication

• Matrix product:
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We will use upper case letters for matrices. The elements 

are referred by Ai,j. 

e.g.
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Matrix transpose

Transpose: You can think of it as 
– “flipping” the rows and columns 

OR 
– “reflecting” vector/matrix on line 
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e.g.

A is a symmetric matrix if 𝐴 = 𝐴𝑇
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Linear independence
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(u,v)=(0,0), i.e. the columns are 
linearly independent.

• A set of vectors is linearly independent if none of them can 
be written as a linear combination of the others.

• Vectors v1,…,vk are linearly independent if c1v1+…+ckvk = 0 
implies c1=…=ck=0

• Otherwise they are linearly

dependent
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ue.g.

𝑥3 = −2𝑥1 + 𝑥2

Linearly dependent
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Inverse of a matrix

• Inverse of a square matrix A, denoted by A-1 is 
the unique matrix s.t.

– AA-1 =A-1A=I (identity matrix)

• If A-1 and B-1 exist, then 

– (AB)-1 = B-1A-1,

– (AT)-1 = (A-1)T

• For orthonormal matrices 

• For diagonal matrices 
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Rank of a Matrix

• rank(A) (the rank of a m-by-n matrix A) is

The maximal number of linearly independent columns

The maximal number of linearly independent rows

• If A is n by m, then
– rank(A)<= min(m,n)

• Examples 2 1 3
0 5 2

9



System of linear equations

Matrix formulation

If A has an inverse, solution is 𝑥 = 𝐴−1𝑏
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Linear regression

• One of the most widely used techniques

• Fundamental to many complex models

– Generalized Linear Models

– Logistic regression

– Neural networks

– Deep learning

• Easy to understand and interpret

• Efficient to solve in closed form

• Efficient practical algorithm (gradient descent)
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Training

Testing
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Hypothesis 
space



Linear regression

Features

Response 
variables
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Hypothesis: linear model

ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

Simple linear regression
Regression model is a line with 2 parameters: 𝜃0, 𝜃1
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Least squares Linear Regression

1

𝑛

Mean Square 
Error (MSE)
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Terminology and Metrics

• Residuals

– Difference between predicted values and actual values
values

– Predicted value for example i is: ො𝑦(𝑖)= ℎ𝜃 𝑥(𝑖)

– 𝑅(𝑖) = 𝑦(𝑖) − ො𝑦(𝑖) = |𝑦 𝑖 − (𝜃0 + 𝜃1𝑥(𝑖))|

• Residual Sum of Squares (RSS)

– 𝑅𝑆𝑆 = σ 𝑅(𝑖) = σ 𝑦 𝑖 − (𝜃0 + 𝜃1𝑥(𝑖))
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• Residual Standard Error (RSE)

– 𝑅𝑆𝐸 =
𝑅𝑆𝑆

𝑛−2

– 𝑅𝑆𝐸2 is a measure of variance of the model 16



Interpretation

ෝ𝒚 = 𝜽𝟎 + 𝜽𝟏𝒙

ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

Residual

𝜽𝟏 = 𝚫𝐲/𝚫𝐱

Slope

𝜃0 Intercept

MSE=
1

𝑛
σ𝑖=1

𝑛 ℎ𝜃 𝑥(𝑖) − 𝑦(𝑖) 2
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𝑥(𝑖), 𝑦(𝑖)



Intuition on MSE
1

𝑛

18
Fix 𝜃0 =0



Intuition on cost function
1

𝑛
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Intuition on cost function

1

𝑛
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Cost function
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Relation between ℎ and 𝐽
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Relation between ℎ and 𝐽
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Relation between ℎ and 𝐽
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Relation between ℎ and 𝐽

How to find optimal model 
parameters 𝜃 to minimize cost 𝐽?
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Simple linear regression

ҧ𝑥 =
σ𝑖=1

𝑛 𝑥(𝑖)

𝑛

ത𝑦 =
σ𝑖=1

𝑛 𝑦(𝑖)

𝑛
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• Dataset 𝑥(𝑖)∈ 𝑅, 𝑦(𝑖) ∈ 𝑅, ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

• 𝐽 𝜃 =
1

𝑛
σ𝑖=1

𝑛 𝜃0 + 𝜃1𝑥(𝑖) − 𝑦(𝑖) 2
loss

𝜕𝐽 𝜃

𝜕𝜃0
= 

2

𝑛
σ𝑖=1

𝑛 𝜃0 + 𝜃1𝑥(𝑖) − 𝑦(𝑖) = 0

𝜕𝐽(𝜃)

𝜕𝜃1
= 

2

𝑛
σ𝑖=1

𝑛 𝑥(𝑖) 𝜃0 + 𝜃1𝑥(𝑖) − 𝑦(𝑖) = 0

• Solution of min loss

– 𝜃0 = ത𝑦 − 𝜃1 ҧ𝑥

– 𝜃1 =
σ (𝑥 𝑖 − ҧ𝑥)(𝑦(𝑖) − ത𝑦)

σ 𝑥(𝑖)− ҧ𝑥
2



Hypothesis Testing

• Is there some relationship between X and Y?
• Null Hypothesis: No relationship between X and Y

• Equivalent to 𝜃1 = 0
• Alternative Hypothesis: There is relationship between X and Y

• Equivalent to 𝜃1 ≠ 0

Reject Null 
Hypothesis
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Hypothesis Testing

• If the p value is very small, the null hypothesis can 
be rejected!

• If the p value is large, we cannot say anything about 
the null hypothesis (whether it’s true or not)
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How Well Does the Model Fit?
• Residual Sum of Squares

– 𝑅𝑆𝑆 = σ 𝑅
(𝑖)

= σ 𝑦 𝑖 − (𝜃0 + 𝜃1𝑥(𝑖))
2

• Total Sum of Squares

– T𝑆𝑆 = σ 𝑦 𝑖 − ത𝑦
2

– Total variance of the response

• Proportion of variability in Y that can be explained using X

– 𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
∈ [0,1]

• Correlation between feature and response

For simple regression 𝑅2 is equal to Cor(X,Y)! 
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Lab example
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Simple LR
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Residual plot

Estimated responses 32



Simple LR

Coef not zero!

𝑅𝑆𝐸 = 𝑀𝑆𝐸
𝑅2 measures linear relationship between X and Y
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Multiple LR
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Review linear regression

• Simple linear regression: one dimension

• Multiple linear regression: multiple 
dimensions

• Minimize cost (loss) function

– MSE: average of squared residuals

• Can derive closed-form solution

– 𝜃0 = ത𝑦 − 𝜃1 ҧ𝑥

– 𝜃1 =
σ (𝑥 𝑖 − ҧ𝑥)(𝑦(𝑖) − ത𝑦)

σ 𝑥(𝑖)− ҧ𝑥
2
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