DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

September 13 2018

Review

- Probability review
 - Random variables
 - Expectation, Variance, CDF, PDF
 - Example distributions
 - Independence and conditional independence
 - Bayes' Theorem
- Linear algebra review
 - Matrix, vectors
 - Inner products
 - Norms
 - Distance

Resources

Probability

- <u>Review notes</u> from Stanford's machine learning class
- Sam Roweis's probability review

Linear algebra

- <u>Review notes</u> from Stanford's machine learning class
- Sam Roweis's <u>linear algebra review</u>

Vectors and matrices

 m-by-n matrix is an object in R^{mxn} with m rows and n columns, each entry filled with a (typically) real number:

(1	2	8)
 4	78	6
9	3	2)

Matrix multiplication

We will use upper case letters for matrices. The elements are referred by Ai,j.

• Matrix product: $A \in \mathbb{R}^{m \times n} \qquad B \in \mathbb{R}^{n \times p}$ $C = AB \in \mathbb{R}^{m \times p}$ $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$ k=1**e.g.** $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ $AB = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{11}b_{11} + a_{22}b_{21} & a_{22}b_{22} \\ a_{11}b_{12} + a_{22}b_{22} \\ a_{11}b_{12} + a_{22}b_{22} \\ a_{11}b_{12} + a_{22}b_{22} \end{pmatrix}$

Matrix transpose

Transpose: You can think of it as — "flipping" the rows and columns OR

"reflecting" vector/matrix on line

e.g.
$$\begin{pmatrix} a \\ b \end{pmatrix}^T = \begin{pmatrix} a & b \end{pmatrix}$$

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$
• $(A^T)^T = A$
• $(AB)^T = B^T A^T$
• $(A+B)^T = A^T + B^T$

A is a symmetric matrix if $A = A^T$

Linear independence

- A set of vectors is linearly independent if none of them can be written as a linear combination of the others.
- Vectors $v_1, ..., v_k$ are linearly independent if $c_1v_1 + ... + c_kv_k = 0$ implies $c_1 = \dots = c_k = 0$
- Otherwise they are linearly dependent

$$\begin{pmatrix} | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

e.g. $\begin{pmatrix} 1 & 0 \\ 2 & 3 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ (u,v)=(0,0), i.e. the columns are linearly independent. $x_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ $x_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$ $x_3 = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$

Linearly dependent

$$x_3 = -2x_1 + x_2$$

Inverse of a matrix

 Inverse of a square matrix A, denoted by A⁻¹ is the *unique* matrix s.t.

– AA⁻¹ = A⁻¹A=I (identity matrix)

• If A⁻¹ and B⁻¹ exist, then

$$-(AB)^{-1} = B^{-1}A^{-1},$$

$$- (A^{T})^{-1} = (A^{-1})^{T}$$

- For orthonormal matrices $\mathbf{A}^{-1} = \mathbf{A}^{\mathsf{T}}$
- For diagonal matrices $\mathbf{D}^{-1} = \operatorname{diag}\{d_1^{-1}, \ldots, d_n^{-1}\}$

Rank of a Matrix

- rank(A) (the rank of a m-by-n matrix A) is
 The maximal number of linearly independent columns
 The maximal number of linearly independent rows
- If A is n by m, then
 - rank(A)<= min(m,n)</pre>
- Examples

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 & 3 \\ 0 & 5 & 2 \end{pmatrix}$$

System of linear equations

Matrix formulation

Ax = b

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}.$$

If A has an inverse, solution is $x = A^{-1}b$

Linear regression

- One of the most widely used techniques
- Fundamental to many complex models
 - Generalized Linear Models
 - Logistic regression
 - Neural networks
 - Deep learning
- Easy to understand and interpret
- Efficient to solve in closed form
- Efficient practical algorithm (gradient descent)

Supervised Learning: Overview

Linear regression

Given:

- Data
$$X = \left\{ x^{(1)}, \dots, x^{(n)} \right\}$$
 where $x^{(i)} \in \mathbb{R}^d$ Features
- Corresponding labels $y = \left\{ y^{(1)}, \dots, y^{(n)} \right\}$ where $y^{(i)} \in \mathbb{R}$

 F_{N}

Response variables

Hypothesis: linear model

• Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Simple linear regression Regression model is a line with 2 parameters: θ_0 , θ_1

• Fit model by minimizing sum of squared errors

least squares (LSQ) The fitted line is used as a predictor

Least squares Linear Regression

Cost Function

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

Mean Square Error (MSE)

 X_1

• Fit by solving $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

Terminology and Metrics

- Residuals
 - Difference between predicted values and actual values values
 - Predicted value for example i is: $\hat{y}^{(i)} = h_{\theta}(x^{(i)})$

$$-R^{(i)} = |y^{(i)} - \hat{y}^{(i)}| = |y^{(i)} - (\theta_0 + \theta_1 x^{(i)})|$$

• Residual Sum of Squares (RSS)

$$-RSS = \sum R^{(i)} = \sum [y^{(i)} - (\theta_0 + \theta_1 x^{(i)})]^2$$

• Residual Standard Error (RSE)

$$-RSE = \sqrt{\frac{RSS}{n-2}}$$

 $-RSE^2$ is a measure of variance of the model

Intuition on MSE

 $J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$ For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$ $h_{\theta}(x)$ $J(\theta_1)$ (for fixed θ_1 , this is a function of x) (function of the parameter θ_1) $h_{\theta}(x)$ 3 2 $J(\theta_1)$ y $\theta_1 = 1$ 1 -0.5 0.5 1 1.5 2 2.50 1 2 3 Х θ_1

Fix $\theta_0 = 0$

Intuition on cost function

Intuition on cost function

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$
For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_{0}, \theta_{1}]$

$$h_{\theta}(x)$$
(for fixed θ_{1} , this is a function of x)
$$J(\theta_{1})$$
(function of the parameter θ_{1})
$$J(0) \approx 2.333$$

$$J(\theta_{1})$$

$$J(\theta_{1}$$

Based on example by Andrew Ng

Х

y

 θ_1

Cost function

 $J(\theta_0, \theta_1)$

 $h_{\theta}(x)$

 $J(\theta_0, \theta_1)$

 $h_{\theta}(x)$

 $J(\theta_0, \theta_1)$

 $h_{\theta}(x)$

 $\overset{\times}{\underset{\times}} \overset{\times}{\overset{\times}}$

Size (feet²)

2000

700

600

500

Price \$ (in 1000s) 000 \$ 000 \$ 000s 0000 000 \$ 000\$ \$ 000s 0000 \$ 000\$ \$ 000\$ \$ 000\$ \$ 000\$ \$ 000\$

200

100

0

1000

(for fixed θ_0 , θ_1 , this is a function of x)

Training data

4000

3000

 $J(\theta_0, \theta_1)$

(function of the parameters θ_0, θ_1)

How to find optimal model parameters θ to minimize cost J?

Simple linear regression

- Dataset $x^{(i)} \in R, y^{(i)} \in R, h_{\theta}(x) = \theta_0 + \theta_1 x$
- $J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(\theta_0 + \theta_1 x^{(i)} y^{(i)}\right)^2 \text{ loss}$ $\frac{\partial J(\theta)}{\partial \theta_0} = \frac{2}{n} \sum_{i=1}^{n} \left(\theta_0 + \theta_1 x^{(i)} y^{(i)}\right) = 0$ $\frac{\partial J(\theta)}{\partial \theta_1} = \frac{2}{n} \sum_{i=1}^{n} x^{(i)} \left(\theta_0 + \theta_1 x^{(i)} y^{(i)}\right) = 0$
- Solution of min loss

$$-\theta_0 = \overline{y} - \theta_1 \,\overline{x}$$
$$-\theta_1 = \frac{\sum (x^{(i)} - \overline{x})(y^{(i)} - \overline{y})}{\sum (x^{(i)} - \overline{x})^2}$$

$$\bar{x} = \frac{\sum_{i=1}^{n} x^{(i)}}{n}$$
$$\bar{y} = \frac{\sum_{i=1}^{n} y^{(i)}}{n}$$

Hypothesis Testing

- Is there some relationship between X and Y?
- Null Hypothesis: No relationship between X and Y
 - Equivalent to $\theta_1 = 0$
- Alternative Hypothesis: There is relationship between X and Y
 - Equivalent to $\theta_1 \neq 0$

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

Reject Null Hypothesis

Hypothesis Testing

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

- If the p value is very small, the null hypothesis can be rejected!
- If the p value is large, we cannot say anything about the null hypothesis (whether it's true or not)

How Well Does the Model Fit?

• Residual Sum of Squares

$$-RSS = \sum R^{(i)} = \sum [y^{(i)} - (\theta_0 + \theta_1 x^{(i)})]^2$$

• Total Sum of Squares

$$-TSS = \sum \left[y^{(i)} - \bar{y} \right]^2$$

- Total variance of the response
- Proportion of variability in Y that can be explained using X

$$- R^2 = 1 - \frac{RSS}{TSS} \in [0, 1]$$

• Correlation between feature and response

$$\operatorname{Cor}(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}},$$

For simple regression R^2 is equal to Cor(X,Y)!

Lab example

> > library(MASS)

> fix(Boston)

>

🐨 Data Editor														
	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	lstat	medv
1	0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
2	0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
3	0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
4	0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
5	0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2
6	0.02985	0	2.18	0	0.458	6.43	58.7	6.0622	3	222	18.7	394.12	5.21	28.7
7	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9
8	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311	15.2	396.9	19.15	27.1
9	0.21124	12.5	7.87	0	0.524	5.631	100	6.0821	5	311	15.2	386.63	29.93	16.5
10	0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311	15.2	386.71	17.1	18.9
11	0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15
12	0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5	311	15.2	396.9	13.27	18.9
13	0.09378	12.5	7.87	0	0.524	5.889	39	5.4509	5	311	15.2	390.5	15.71	21.7
14	0.62976	0	8.14	0	0.538	5.949	61.8	4.7075	4	307	21	396.9	8.26	20.4
15	0.63796	0	8.14	0	0.538	6.096	84.5	4.4619	4	307	21	380.02	10.26	18.2
16	0.62739	0	8.14	0	0.538	5.834	56.5	4.4986	4	307	21	395.62	8.47	19.9

23

Simple LR

Residual plot

> plot(predict(lm.fit), residuals(lm.fit))
>

> plot(lm.fit, which=1)

Estimated responses

Simple LR

```
>
> lm.fit=lm(medv~lstat,data=Boston)
> summary(lm.fit)
Call:
lm(formula = medv ~ lstat, data = Boston)
Residuals:
   Min 10 Median 30
                                 Max
-15.168 -3.990 -1.318 2.034 24.500
                                     Coef not zero!
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.55384 0.56263 61.41 <2e-16 ***
lstat -0.95005 0.03873 -24.53
                                       <2e-16 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
Residual standard error: 6.216 on 504 degrees of freedom
Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
```

F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16

$RSE = \sqrt{MSE}$

 R^2 measures linear relationship between X and Y

Multiple LR

> lm.fit=lm(medv~nox+rm+lstat+ptratio+rad+dis,data=Boston)
> summary(lm.fit)

Call: lm(formula = medv ~ nox + rm + lstat + ptratio + rad + dis, d\$ Residuals: 10 Median 30 Min Max -12.8663 -3.1525 -0.5509 1.9870 27.1748 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 40.61722 5.07480 8.004 8.53e-15 *** -20.16431 3.57710 -5.637 2.90e-08 *** nox 4.04507 0.41938 9.645 < 2e-16 *** rm lstat -0.59197 0.04846 -12.217 < 2e-16 *** -1.12748 0.12634 -8.924 < 2e-16 *** ptratio rad 0.05399 0.03682 1.466 0.143 0.16840 -7.101 4.29e-12 *** -1.19580 dis Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1 Residual standard error: 4.988 on 499 degrees of freedom Multiple R-squared: 0.7093, Adjusted R-squared: 0.7058 F-statistic: 203 on 6 and 499 DF, p-value: < 2.2e-16

Review linear regression

- Simple linear regression: one dimension
- Multiple linear regression: multiple dimensions
- Minimize cost (loss) function
 MSE: average of squared residuals
- Can derive closed-form solution

$$-\theta_0 = \overline{y} - \theta_1 \,\overline{x}$$
$$-\theta_1 = \frac{\sum (x^{(i)} - \overline{x})(y^{(i)} - \overline{y})}{\sum (x^{(i)} - \overline{x})^2}$$

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!