## DS 4400

#### Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

November 29 2018

# Logistics

- Final projects
  - Presentations: Monday, Dec 3, 3-5:30pm in ISEC
     655
  - Report: Friday, Dec 7 in Gradescope
- No class on Dec 4
- Final Exam
  - Office hours: Monday, Dec 10, 2-4pm
  - Tuesday, Dec 11, 2-5pm in ISEC 655

# **Adversarial Machine Learning**



- Studies attacks against machine learning systems
- Designs robust machine learning algorithms that resist sophisticated attacks
- Many challenging open problems!

#### Attacks against supervised learning Training Data Learning ML algorithm model Labels Poisoning **Privacy Evasion** ML New Predictions model data Unlabeled

Testing



## **Evasion Attacks**

Given original example x, 
$$f(x) = c$$
  
Find adversarial example x'  
 $\min ||x - x'||_2^2$   
Such that  $f(x') = t$   
 $x'$  is in range

#### **Equivalent formulation**

$$\min c \left\| \delta \right\|_{2}^{2} + \ell_{t}(x + \delta)$$
$$x' = x + \delta$$
$$\ell_{t}(x') \text{ is loss function on } x'$$

### [Szegedy et al. 13] Intriguing properties of neural networks





- Corrupt the predictions by the ML model significantly
- Predictions on *most points* are impacted in testing
- Attacker Capability:
  - Insert fraction of poisoning points in training
- [M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning. In IEEE S&P 2018]

## **Optimization Formulation**

Given a training set D find a set of poisoning data points  $D_p$ that maximizes the adversary objective A on validation set  $D_{val}$ 

> where corrupted model  $\theta_p$  is learned by minimizing the loss function L on  $D \cup D_p$

$$\operatorname{argmax}_{D_p} A(D_{val}, \boldsymbol{\theta}_p) \text{ s.t.}_{\boldsymbol{\theta}_p} \boldsymbol{\theta}_p \in \operatorname{argmin}_{\boldsymbol{\theta}_p} L(D \cup D_p, \boldsymbol{\theta})$$

Implicit dependence

Optimization formulation in white-box setting

- Attacker knows training data D
- Attacker knows ML model and loss function L

# Gradient Ascent Algorithm

- **Input**: poisoned point  $x_0$ , label  $y_0$ 
  - Adversarial objective A
- **Output**: poisoned point *x*, label *y*
- 1. Initialize poisoned point  $x \leftarrow x_0$ ;  $y \leftarrow y_0$
- 2. Repeat
  - Store previous iteration  $x_{pr} \leftarrow x$ ;  $y_{pr} \leftarrow y$
  - Update in direction of gradients choosing  $\alpha$  with line search and project to feasible space

$$\begin{aligned} x &\leftarrow \Pi(\mathbf{x} + \alpha \nabla_x A(x, y)) \\ \mathbf{y} &\leftarrow \Pi(\mathbf{y} + \alpha \nabla_y A(x, y)) \end{aligned}$$

- 3. Until  $|A(x,y) A(x_{pr},y_{pr})| < \epsilon$
- 4. Return *x*, y

#### DEEP LEARNING EVERYWHERE



- Most ML models are vulnerable in face of attacks!
  - Evasion (testing-time) attacks
  - Poisoning (training-time) attacks
  - Privacy attacks
- How to make ML more robust to attacks?

## **Adversarial Training**

Algorithm 1 Adversarial training of network N. Size of the training minibatch is m. Number of adversarial images in the minibatch is k.

- 1: Randomly initialize network N
- 2: repeat
- Read minibatch  $B = \{X^1, \ldots, X^m\}$  from training set 3:
- Generate k adversarial examples  $\{X_{adv}^1, \ldots, X_{adv}^k\}$  from corresponding 4: clean examples  $\{X^1, \ldots, X^k\}$  using current state of the network N Make new minibatch  $B' = \{X^1_{adv}, \ldots, X^k_{adv}, X^{k+1}, \ldots, X^m\}$
- 5:
- Do one training step of network N using minibatch B'6:
- 7: until training converged

- I. Goodfellow et al. Explaining and harnessing adversarial examples, ICLR 2015.
- A. Kurakin et al. Adversarial Machine Learning at Scale, ICLR 2017.

### Is Adv Training Effective?





# **Resilient Linear Regression**

#### Goal

- Train a robust linear regression model, assuming  $\alpha \cdot n$  poisoned points among N points in training
- MSE should be close to original MSE
- No ground truth on data distribution available
- Existing techniques
  - Robust statistics
    - Huber [Huber 1964], RANSAC [Fischler and Bolles 1961]
    - Resilient against outliers and random noise
  - Adversarial resilient regression: [Chen et al. 13]
    - Make simplifying assumption on data distribution (e.g., Gaussian)

## Our Defense: TRIM

- Given dataset on n points and  $\alpha n$  attack points, find best model on n of  $(1 + \alpha)n$  points
- If *w*, *b* are known, find points with smallest residual
- But *w*, *b* and true data distribution are unknown!



TRIM: alternately estimate model and find low residual points  $\underset{w,b,I}{\operatorname{argmin}} L(w, b, I) = \frac{1}{|I|} \sum_{i \in I} (f(\boldsymbol{x}_i) - y_i)^2 + \lambda \Omega(\boldsymbol{w})$   $N = (1 + \alpha)n, \quad I \subset [1, ..., N], \quad |I| = n$ 

## **Trimmed optimization**

 Estimate model parameters and identify points with minimum residual alternatively

Alternating optimization

- Select *I* a random subset in {1, ..., *N*}, |*I*| = n
   Assume poisoning rate (or upper bound) is known
- Repeat
  - -Estimate  $(w, b) = \operatorname{argmin} L(w, b, I)$
  - Select new set I of points, |I| = n, with lowest residuals under new model
- Until convergence (loss does not decrease)

## Defense results

- TRIM MSE is within 1% of the original model MSE
- Significant improvement over existing methods



Review

## Machine learning is everywhere



## DS-4400 Course objectives

- Become familiar with machine learning tasks
  - Supervised learning vs unsupervised learning
  - Classification vs Regression vs Clustering
- Study most well-known algorithms and understand to which problem they apply
  - Regression (linear regression)
  - Classification (SVM, decision trees, neural networks)
  - Clustering (k-means)
- Learn to apply ML algorithms to real datasets

   Using existing packages in R and Python
- Learn about security challenges of ML
   Introduction to adversarial ML

http://www.ccs.neu.edu/home/alina/classes/Fall2018/

## What we covered

| Adversarial ML                                                                                                              |                                                                                                                                                        |                            |                                                                                                                                    |                                                          |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Ensembles<br>• Bagging<br>• Random forests<br>• Boosting<br>• AdaBoost                                                      | Deep learning <ul> <li>Feed-forward Neural Nets</li> <li>Convolutional Neural Nets</li> <li>Recurrent Neural Nets</li> <li>Back-propagation</li> </ul> |                            |                                                                                                                                    | Unsupervised<br>• PCA<br>• Auto-encoders<br>• Clustering |
| <ul> <li>Linear classification</li> <li>Perceptron</li> <li>Logistic regression</li> <li>LDA</li> <li>Linear SVM</li> </ul> | <ul> <li>Non-linear classification</li> <li>kNN</li> <li>Decision trees</li> <li>Kernel SVM</li> <li>Naïve Bayes</li> </ul>                            |                            | <ul> <li>Metrics</li> <li>Cross-validation</li> <li>Regularization</li> <li>Feature selection</li> <li>Gradient Descent</li> </ul> |                                                          |
| Density Estimation                                                                                                          |                                                                                                                                                        |                            |                                                                                                                                    |                                                          |
| Linear algebra                                                                                                              |                                                                                                                                                        | Probability and statistics |                                                                                                                                    |                                                          |

# Terminology

- Hypothesis space  $H = \{f: X \to Y\}$
- Training data  $D = (x_i, y_i) \in X \times Y$
- Features:  $x_i \in X$
- Labels  $y_i \in Y$ 
  - Classification: discrete  $y_i \in \{-1, 1\}$
  - Regression:  $y_i \in R$
- Loss function: L(f, D)

- Measures how well f fits training data

• Training algorithm: Find hypothesis  $\hat{f}: X \to Y$ 

$$-\hat{f} = \operatorname*{argmin}_{f \in H} L(f, D)$$



### **Gradient Descent**



## Linear classifiers

• Linear classifiers: represent decision boundary by hyperplane

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} \boldsymbol{x}^{\mathsf{T}} = \begin{bmatrix} 1 & x_1 & \dots & x_d \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix}$$

 $h(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}) \text{ where } \operatorname{sign}(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$ 

- Note that:  $\theta^{\mathsf{T}} x > 0 \implies y = +1$  $\theta^{\mathsf{T}} x < 0 \implies y = -1$ 

All the points x on the hyperplane satisfy:  $\theta^T x = 0$ 

## **Online Perceptron**

Let 
$$\boldsymbol{\theta} \leftarrow [0, 0, \dots, 0]$$
  
Repeat:  
Receive training example  $(\boldsymbol{x}^{(i)}, y^{(i)})$   
if  $y^{(i)} \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} \leq 0$  // prediction is incorrect  
 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(i)} \boldsymbol{x}^{(i)}$ 

**Online learning** – the learning mode where the model update is performed each time a single observation is received

**Batch learning** – the learning mode where the model update is performed after observing the entire training set



- Assume a threshold and...
  - Predict y = 1 if  $h_{\theta}(x) \ge 0.5$
  - Predict y = 0 if  $h_{\theta}(x) < 0.5$



Logistic Regression is a linear classifier!

#### LDA

Given training data  $(x^{(i)}, y^{(i)}), i = 1, ..., n, y^{(i)} \in \{1, ..., K\}$ 

1. Estimate mean and variance

$$\hat{\mu}_{k} = \frac{1}{n_{k}} \sum_{i:y_{i}=k} x^{(i)}$$

$$\hat{\sigma}^{2} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{i:y_{i}=k} (x^{(i)} - \hat{\mu}_{k})^{2}$$

2. Estimate prior

$$\hat{\pi}_k = n_k/n.$$

Given testing point *x*, predict k that maximizes:

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

## SVM - Max Margin



- Support vectors are "closest" to hyperplane
- If support vectors change, classifier changes

#### SVM with Kernels



**FIGURE 9.9.** Left: An SVM with a polynomial kernel of degree 3 is applied to the non-linear data from Figure 9.8, resulting in a far more appropriate decision rule. Right: An SVM with a radial kernel is applied. In this example, either kernel is capable of capturing the decision boundary.

## Kernels

• Linear kernels

 $-K(a,b) = \langle a,b \rangle = \sum_i a_i b_i$ 

Polynomial kernel of degree m

$$-K(a,b) = \left(1 + \sum_{i=0}^{d} a_i b_i\right)^m$$

Radial Basis Function (RBF) kernel (or Gaussian)

$$-K(a,b) = \exp(-\gamma \sum_{i=0}^{d} (a_i - b_i)^2)$$

• Support vector machine classifier  $-h(z) = \theta_0 + \sum_{i \in S} \alpha_i K(z, x^{(i)})$ 

#### K Nearest Neighbour (K-NN) Classifier

#### Algorithm

- For each test point, x, to be classified, find the K nearest samples in the training data
- Classify the point, x, according to the majority vote of their class labels





## Learning Decision Trees

- Start from empty decision tree
- Split on next best attribute (feature)
  - Use, for example, information gain to select attribute:

 $\arg\max_i IG(X_i) = \arg\max_i H(Y) - H(Y \mid X_i)$ 

Recurse

ID3 algorithm uses Information Gain Information Gain reduces uncertainty on Y

## Ensembles



#### **Majority Votes**

## **Random Forests**

- Construct decision trees on bootstrap replicas
  - Restrict the node decisions to a small subset of features picked randomly for each node
- Do not prune the trees
  - Estimate tree performance on out-of-bootstrap data
- Average the output of all trees (or choose mode decision)

Trees are de-correlated by choice of random subset of features

## AdaBoost



- 1: Initialize a vector of n uniform weights  $\mathbf{w}_1$ 2: for  $t = 1, \ldots, T$
- 3: Train model  $h_t$  on X, y with weights  $\mathbf{w}_t$
- 4: Compute the weighted training error of  $h_t$
- 5: Choose  $\beta_t = \frac{1}{2} \ln \left( \frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:  $w_{t+1,i} = w_{t,i} \exp(-\beta_t y^{(i)} h_t(x^{(i)}))$
- 7: Normalize  $\mathbf{w}_{t+1}$  to be a distribution 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



- Final model is a weighted combination of members
  - Each member weighted by its importance

### Naïve Bayes Classifier

Idea: Use the training data to estimate  $P(X \mid Y)$  and P(Y). Then, use Bayes rule to infer  $P(Y|X_{new})$  for new data

 $P[Y = k | X = x] = P[Y = k | X = x] = P[X_1 = x_1 \land \dots \land X_d = x_d | Y = k]$   $P[X_1 = x_1 \land \dots \land X_d = x_d]$   $P[X_1 = x_1 \land \dots \land X_d = x_d]$ Unnecessary, as it turns out

• Recall that estimating the joint probability distribution  $P(X_1, X_2, \dots, X_d \mid Y)$  is not practical

## **Confusion Matrix**

• Given a dataset of P positive instances and N negative instances:



$$\operatorname{accuracy} = \frac{TP + TN}{P + N}$$

 Imagine using classifier to identify positive cases (i.e., for information retrieval)

$$\text{precision} = \frac{TP}{TP + FP}$$

Probability that classifier predicts positive correctly

Probability that actual class is predicted correctly

 $\text{recall} = \frac{TP}{TP + FN}$ 



- Receiver Operating Characteristic (ROC)
- Determine operating point (e.g., by fixing false positive rate)

# **Cross Validation**

- Data: labeled instances, e.g. emails marked spam/ham
  - Training set
  - Test set
  - Randomly split training set into training and validation, e.g., 66% 33%
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
  - Select a hypothesis *f* (Tune hyperparameters on held-out or *validation* set)
  - Estimate and reduce average error during multiple runs by randomly choosing validation set
  - Compute final error on testing set
- Evaluation
  - Accuracy: fraction of instances predicted correctly
  - Use other metrics as appropriate (precision, recall)
    - Improves model generalization
    - Avoids overfitting



### **Bias-Variance Tradeoff**



- Bias = Difference between estimated and true models
- Variance = Model difference on different training sets

## Regularization

 A method for controlling the complexity of learned hypothesis

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left( h_{\theta} \left( x^{(i)} \right) - y^{(i)} \right)^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}$$
 Ridge  
model fit to data regularization  
$$J(\theta) = \sum_{i=1}^{n} \left( h_{\theta} \left( x^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{d} |\theta_{j}|$$
 LASSO  
Regularization  
Residuals

# Methods for Feature Selection

#### • Wrappers

- Select subset of features that gives best prediction accuracy (using cross-validation)
- Model-specific

#### • Filters

- Compute some statistical metrics (correlation coefficient, mutual information)
- Select features with statistics higher than threshold
- Embedded methods
  - Feature selection done as part of training
  - Example: Regularization (Lasso, L1 regularization)

# **Neural Network Architectures**

#### Feed-Forward Networks

 Neurons from each layer connect to neurons from next layer Deep Feed Forward (DFF)



Deep Convolutional Network (DCN)



- Includes convolution layer for feature reduction
- Learns hierarchical representations

#### **Recurrent Networks**

- Keep hidden state
- Have cycles in computational graph





### Feed-Forward Neural Network



## Multi-class classification



## Softmax classifier



- Predict the class with highest probability
- Generalization of sigmoid/logistic regression to multi-class

## **Convolutional Nets**



## **RNN** Architectures

#### **Recurrent Neural Networks: Process Sequences**



47

# Training NN with Backpropagation

Given training set  $(x_1, y_1), ..., (x_N, y_N)$ Initialize all parameters  $W^{[\ell]}, b^{[\ell]}$  randomly, for all layers  $\ell$ Loop

Set  $\Delta_{ij}^{(l)} = 0 \quad \forall l, i, j$  (Used to accumulate gradient) For each training instance  $(x^{(i)}, y^{(i)})$ Set  $\mathbf{a}^{(1)} = \mathbf{x}_i$ Compute  $\{\mathbf{a}^{(2)}, \dots, \mathbf{a}^{(L)}\}$  via forward propagation **EPOCH** Compute  $\boldsymbol{\delta}^{(L)} = \mathbf{a}^{(L)} - y^{(i)}$ Compute errors  $\{\boldsymbol{\delta}^{(L-1)}, \dots, \boldsymbol{\delta}^{(2)}\}$ Compute gradients  $\Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}$ 

Update weights via gradient step

• 
$$W_{ij}^{[\ell]} = W_{ij}^{[\ell]} - \alpha \frac{\Delta_{ij}^{[\ell]}}{N}$$

• Similar for  $b_{ij}^{[\ell]}$ 

Until weights converge or maximum number of epochs is reached

## Mini-batch Gradient Descent

#### Initialization

- For all layers  $\ell$ 
  - Set  $W^{[\ell]}$ ,  $b^{[\ell]}$  at random
- Backpropagation
  - Fix learning rate  $\alpha$
  - For all layers  $\ell$  (starting backwards)
    - For all batches b of size B with training examples  $x^{(ib)}$ ,  $y^{(ib)}$

$$-W^{[\ell]} = W^{[\ell]} - \alpha \sum_{i=1}^{B} \frac{\partial L(\hat{y}^{(ib)}, y^{(ib)})}{\partial W^{[\ell]}}$$
$$-b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{B} \frac{\partial L(\hat{y}^{(ib)}, y^{(ib)})}{\partial b^{[\ell]}}$$

#### PCA

• We can apply these formulas to get the new representation for each instance  ${\bf x}$ 



• The new 2D representation for  $\mathbf{x}_3$  is given by:

 $\hat{x}_{31} = 0.34(0) + 0.04(0) - 0.64(1) + \dots$  $\hat{x}_{32} = 0.23(0) + 0.13(0) + 0.93(1) + \dots$ 

- The re-projected data matrix is given by  ${\hat X}=X{\hat Q}$ 

#### Autoencoders

How to learn this feature representation?

Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself



## K means Algorithm

#### Initialization

- Data are x<sub>1:N</sub>
- Choose initial cluster means m<sub>1:k</sub> (same dimension as data).

#### 2 Repeat

1 Assign each data point to its closest mean

$$z_n = \arg \min_{i \in \{1,\ldots,k\}} d(\mathbf{x}_n, \mathbf{m}_i)$$

2 Compute each cluster mean to be the coordinate-wise average over data points assigned to that cluster,

$$\mathbf{m}_k = \frac{1}{N_k} \sum_{\{n: z_n = k\}} \mathbf{x}_n$$

#### Ontil assignments z<sub>1:N</sub> do not change

# Agglomerative clustering

- Algorithm:
  - Place each data point into its own singleton group (cluster)
  - Repeat
    - Iteratively merge *the two closest groups/clusters*
  - Until: stopping condition is satisfied
- Output
  - Set of clusters
  - Dendrogram (tree of how data was merged)
- Need to define distance or similarity between groups

