DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

November 15 2018

Review

- Neural Network Architectures
 - Feed-Forward Neural Networks
 - Convolutional Neural Networks (CNNs)
 - Recurrent Neural Networks (RNNs)
- Training with backpropagation
 Mini-batch Gradient Descent
- Unsupervised learning
 - No labels available in training data
 - Discover hidden patterns in data
 - Not standard metrics to evaluate

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Standard metrics for evaluation

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Difficult to evaluate

Unsupervised Learning

- Different learning tasks
- Dimensionality reduction
 - Project the data to lower dimensional space
 - Example: PCA (Principal Component Analysis)
- Feature learning
 - Find feature representations
 - Example: Autoencoders
- Clustering
 - Group similar data points into clusters
 - Example: k-means, hierarchical clustering

PCA Algorithm

- Given data $\{\mathbf{x}_1, ..., \mathbf{x}_n\}$, compute covariance matrix $\boldsymbol{\Sigma}$
 - X is the n x d data matrix
 - Compute data mean (average over all rows of X)
 - Subtract mean from each row of ${\rm X}$ (centering the data)
 - Compute covariance matrix $\Sigma = X^T X$ (Σ is $d \times d$)
- PCA basis vectors are given by the eigenvectors of $\boldsymbol{\Sigma}$
 - $\bullet \ Q, \Lambda = \mathsf{numpy.linalg.eig}(\Sigma)$
 - $\{\mathbf{q}_i, \lambda_i\}_{i=1..n}$ are the eigenvectors/eigenvalues of Σ ... $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$
- Larger eigenvalue ⇒ more important eigenvectors

PCA

• We can apply these formulas to get the new representation for each instance x

• The new 2D representation for \mathbf{x}_3 is given by:

 $\hat{x}_{31} = 0.34(0) + 0.04(0) - 0.64(1) + \dots$ $\hat{x}_{32} = 0.23(0) + 0.13(0) + 0.93(1) + \dots$

- The re-projected data matrix is given by $\hat{X}=X\hat{Q}$

Visualizing data

PCA for image compression

d=1 d=2 d=4

d=32

d=8

Original Image

Training Autoencoders

Doesn't use labels!

Using Features for Classification

Clustering

- Goal: Automatically segment data into groups of similar points
- Question: When and why would we want to do this?
- Useful for:
 - Automatically organizing data
 - Understanding hidden structure in data and data distribution
 - Detect similar points in data and generate representative samples

Clustering Examples

- Social networks
 - Facebook user group according to their interests and profiles
- Image search
 - Retrieve similar images to input image
- NLP
 - Topic discovery in articles
- Medicine
 - Patients with similar disease and symptoms
- Cyber security
 - Machine with same malware infection
 - New attack has no label

Setup

Our data are

$$\mathcal{D} = \{\mathbf{x}_1, \ldots, \mathbf{x}_N\}.$$

Each data point is *d* dimensional, i.e.,

$$\mathbf{x}_{n} = \langle x_{n,1}, \dots, x_{n,d} \rangle$$

Define a *distance function* between data, $d(\mathbf{x}_n, \mathbf{x}_m)$. Goal: segment the data into k groups

$$\{z_1, \ldots, z_N\}$$
 where $z_i \in \{1, \ldots, K\}$.

Assignment from each point to cluster index

Example

500 2-dimensional data points: $\mathbf{x}_n = \langle x_{n,1}, x_{n,2} \rangle$

Partition this data into k groups

What is a good distance function?

Distance

Choice of k

Choice of k

K means Algorithm

- Fix a number of desired clusters k
- Key insight: describe each cluster by its mean value (called cluster representative)
- Algorithm
 - Select k cluster means at random
 - Assign points to "closest cluster"
 - Re-compute cluster means based on new assignment
 - Refine assignment iteratively until convergence

K means Algorithm

Initialization

- Data are x_{1:N}
- Choose initial cluster means m_{1:k} (same dimension as data).

2 Repeat

1 Assign each data point to its closest mean

$$z_n = \arg \min_{i \in \{1,\ldots,k\}} d(\mathbf{x}_n, \mathbf{m}_i)$$

2 Compute each cluster mean to be the coordinate-wise average over data points assigned to that cluster,

$$\mathbf{m}_k = \frac{1}{N_k} \sum_{\{n: z_n = k\}} \mathbf{x}_n$$

Ontil assignments z_{1:N} do not change

Objective Function

- How can we measure how well our algorithm is doing?
- The *k*-means objective function is the sum of the squared distances of each point to each assigned mean

$$F(z_{1:N}, \mathbf{m}_{1:k}) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{x}_n - \mathbf{m}_{z_n}||^2$$

Example: Start

27

Coordinate descent

Coordinate descent is an optimization procedure for a multivariate function that optimizes one direction at the time

$$F(z_{1:N},\mathbf{m}_{1:k}) = \frac{1}{2}\sum_{n=1}^{N} ||\mathbf{x}_n - \mathbf{m}_{z_n}||^2$$

Holding the means fixed, assigning each point to its closest mean minimizes F with respect to $z_{1:N}$.

Holding the assignments fixed, computing the centroids of each cluster minimizes F with respect to $\mathbf{m}_{1:k}$.

Thus, *k*-means is a *coordinate descent* algorithm.

- However, it finds a local minimum
- Multiple restarts are often necessary

Objective for the example data

Round of k-means

Compressing Images

- Each pixel is associated with a red, green, and blue value
- A 1024 × 1024 image is a collection of 1048576 values $\langle x_1, x_2, x_3 \rangle$, which requires 3M of storage
- How can we use *k*-means to compress this image?

Vector Quantization

- Replace each pixel \mathbf{x}_n with its assignment \mathbf{m}_{z_n} ("paint by numbers").
- The *k* means are called the *codebook*.
- With k = 100, we need 7 bits per pixel plus 100×3 bits ≈ 897 K.

Choosing number of clusters

- Choosing k is a nagging problem in cluster analysis
- Sometimes, the problem determines k
 - A certain required compression in VQ
 - Clustering customers for k salespeople in a business
- Usually, we seek the "natural" clustering, but what does this mean?
- It is not well-defined.

Heuristic: A kink in the objective

Notice the "kink" in the objective between 3 and 5. This suggests that 4 is the right number of clusters. Tibshirani (2001) presents a method for finding this kink.

Hierarchical clustering

- Hierarchical clustering is a widely used data analysis tool.
- The idea is to build a binary tree of the data that successively merges similar groups of points.
- Visualizing this tree provides a useful summary of the data.
- Advantages
 - Hierarchical clustering only requires a measure of similarity between groups of data points.
 - No specification of number of clusters (k)

Two Types of Clustering

• **Partitional algorithms:** Construct various partitions and then evaluate them by some criterion

• Hierarchical algorithms: Create a hierarchical decomposition of the set of objects using some criterion (focus of this class)

Bottom up or top down

Top down

Hierarchical

Partitional

Agglomerative clustering

- Algorithm:
 - Place each data point into its own singleton group (cluster)
 - Repeat
 - Iteratively merge *the two closest groups/clusters*
 - Until: stopping condition is satisfied
- Output
 - Set of clusters
 - Dendrogram (tree of how data was merged)
- Need to define distance or similarity between groups

Hierarchical Clustering

We begin with a distance matrix which contains the distances between every pair of objects in our database.

Hierarchical Clustering

Bottom-Up (agglomerative):

Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Computing distance between clusters

Single Linkage

 cluster distance = distance of two closest members in each class

Computing distance between clusters

Complete Linkage

 cluster distance = distance of two farthest members

Computing distance between clusters

Average Linkage

 cluster distance = average distance of all pairs

the most widely used measure Robust against noise

Closest pair (single-link clustering)

Farthest pair (complete-link clustering)

[Pictures from Thorsten Joachims]

Farthest

Mouse tumor data from [Hastie et al.]

Acknowledgements

- Slides made using resources from:
 - Lu Wang
 - David M. Blei
 - Eric Eaton
- Thanks!