DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor, CCIS
Northeastern University

September 112018

Class Outline

- Introduction - 1 week
- Probability and linear algebra review
- Supervised learning - 5 weeks
- Linear regression
- Classification (logistic regression, LDA, kNN, decision trees, random forest, SVM, Naïve Bayes)
- Model selection, regularization, cross validation
- Neural networks and deep learning - 1.5 weeks
- Back-propagation, gradient descent
- NN architectures
- Unsupervised learning - 2.5 weeks
- Dimensionality reduction (PCA)
- Clustering (k-means, hierarchical)
- Adversarial ML-1 week
- Security of ML at testing and training time

Grading

- Assignments - 20\%
- 4-5 assignments based on studied material in class, including programming exercises
- Language: R or Python; Jupyter notebooks
- Final project - 25\%
- Select your own project based on public dataset
- Submit short project proposal and milestone
- Presentation at end of class (10 min) and report
- Exams-50\%
- Midterm - 25\%
- Final exam - 25\%
- Class participation - 5\%
- Participate in class discussion and on Piazza

Supervised Learning

Training

Data

Labeled
(Typically)

Processing

Normalization \longrightarrow\begin{tabular}{c}
Peature

extraction

\longrightarrow

Selection
\end{tabular}

Testing

Supervised Learning: Overview

Hypothesis	Functions \mathcal{F}	Training data
space	$f: \mathcal{X} \rightarrow \mathcal{Y}$	$\left\{\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}\right\}$

\hat{f} model

Review

- ML is a subset of Al designing learning algorithms
- Learning tasks are supervised (e.g., classification and regression) or unsupervised (e.g., clustering)
- Supervised learning uses labeled training data
- Learning the "best" model is challenging
- Select hypothesis space and loss function
- Design algorithm to min loss function (error on training)
- Bias-Variance tradeoff
- Need to generalize on new, unseen test data
- Occam's razor (prefer simplest model with good performance)

Outline

- Probability review
- Random variables
- Expectation, Variance, CDF, PDF
- Example distributions
- Independence and conditional independence
- Bayes' Theorem
- Linear algebra review
- Matrix, vectors
- Inner products
- Norms
- Distance

Probability review

Discrete Random Variables

- Let A denote a random variable
- A represents an event that can take on certain values
- Each value has an associated probability
- Examples of binary random variables:
- $A=1$ have a headache
- $A=$ Sally will be the US president in 2020
- $\mathrm{P}(A)$ is "the fraction of possible worlds in which A is true"

Visualizing A

- Universe U is the event space of all possible worlds
- Its area is 1
$-\mathrm{P}(U)=1$
- $\mathrm{P}(A)=$ area of red oval
- Therefore:

$$
\begin{aligned}
& P(A)+P(\neg A)=1 \\
& P(\neg A)=1-P(A)
\end{aligned}
$$

U

worlds in which A is true

worlds in which A is false

Axioms of Probability

Kolmogorov showed that three simple axioms lead to the rules of probability theory

- de Finetti, Cox, and Carnap have also provided compelling arguments for these axioms

1. All probabilities are between 0 and 1:

$$
0 \leq \mathrm{P}(A) \leq 1
$$

2. Valid propositions (tautologies) have probability 1, and unsatisfiable propositions have probability 0 :

$$
\mathrm{P}(\text { true })=1 ; \quad \mathrm{P}(\text { false })=0
$$

3. The probability of a disjunction is given by:

$$
\mathrm{P}(A \vee B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \wedge B)
$$

Interpreting the Axioms

- $0 \leq \mathrm{P}(A) \leq 1$
- $\mathrm{P}($ true $)=1$
- $\mathrm{P}($ false $)=0$
- $\mathrm{P}(A \vee B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \wedge B)$

The area of A can't get any smaller than 0

A zero area would mean no world could ever have A true

Interpreting the Axioms

- $0 \leq \mathrm{P}(A) \leq 1$
- $\mathrm{P}($ true $)=1$
- $\mathrm{P}($ false $)=0$
- $\mathrm{P}(A \vee B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \wedge B)$

The area of A can't get any bigger than 1

An area of 1 would mean A is true in all possible worlds

Interpreting the Axioms

- $0 \leq \mathrm{P}(A) \leq 1$
- $\mathrm{P}($ true $)=1$
- $\mathrm{P}($ false $)=0$
- $\mathrm{P}(A \vee B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \wedge B)$

The union bound

- For events A and B

$$
P[A \cup B] \leq P[A]+P[B]
$$

U

A

B

Axiom: $\mathrm{P}[\mathrm{A} \cup \mathrm{B}]=\mathrm{P}[\mathrm{A}]+\mathrm{P}[\mathrm{B}]-\mathrm{P}[\mathrm{A} \cap \mathrm{B}]$

If $A \cap B=\Phi$, then $P[A \cup B]=P[A]+P[B]$

Example:

$A_{1}=\left\{\right.$ all x in $\{0,1\}^{n}$ s.t $\left.\operatorname{lsb}_{2}(x)=11\right\} \quad ; \quad A_{2}=\left\{\right.$ all x in $\{0,1\}^{n}$ s.t. $\left.\operatorname{msb}_{2}(x)=11\right\}$
$P\left[\operatorname{lsb}_{2}(x)=11\right.$ or $\left.\operatorname{msb}_{2}(x)=11\right]=P\left[A_{1} \cup A_{2}\right] \leq 1 / 4+1 / 4=1 / 2$

Negation Theorem

$$
\begin{aligned}
& 0 \leq \mathrm{P}(A) \leq 1 \\
& \mathrm{P}(\text { true })=1 ; \quad \mathrm{P}(\text { false })=0 \\
& \mathrm{P}(A \vee B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \wedge B)
\end{aligned}
$$

From these we can prove:

$$
P(\neg A)=1-P(A)
$$

Marginalization

$$
\begin{aligned}
& 0 \leq \mathrm{P}(A) \leq 1 \\
& \mathrm{P}(\text { True })=1 ; \quad \mathrm{P}(\text { False })=0 \\
& \mathrm{P}(A \vee B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \wedge B)
\end{aligned}
$$

From these we can prove:

$$
P(A)=P(A \wedge B)+P(A \wedge \neg B)
$$

How?

Random Variables (Discrete)

Def: a random variable X is a function $\quad X: U \rightarrow V$
Def: A discrete random variable takes a finite number of values: $|\mathrm{V}|$ is finite
Example: X is modeling a coin toss with output 1 (heads) or 0 (tail)

$$
\operatorname{Pr}[X=1]=p, \operatorname{Pr}[X=0]=1-p
$$

Bernoulli Random Variable

We write $\quad \mathrm{X} \longleftarrow U$ to denote a uniform random variable (discrete) over U

$$
\text { for all } u \in U: \quad \operatorname{Pr}[X=u]=1 /|U|
$$

Example: If $p=1 / 2$; then X is a uniform coin toss

Probability Mass Function (PMF): $\mathrm{p}(\mathrm{u})=\operatorname{Pr}[\mathrm{X}=\mathrm{u}]$

Example

1. X is the number of heads in a sequence of n coin tosses
What is the probability $\mathrm{P}[X=k]$?

$$
\mathrm{P}[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { Binomial Random Variable }
$$

2. X is the sum of two fair dice

What is the probability $\mathrm{P}[X=k]$ for $k \in\{2, \ldots, 12\}$?

$$
P[X=2]=1 / 36 ; P[X=3]=2 / 36 ; P[X=4]=3 / 36
$$

For what k is $\mathrm{P}[X=k]$ highest?

Example discrete RVs

- $X \sim \operatorname{Bernoulli}(p)$ (where $0 \leq p \leq 1$): one if a coin with heads probability p comes up heads, zero otherwise.

$$
p(x)= \begin{cases}p & \text { if } p=1 \\ 1-p & \text { if } p=0\end{cases}
$$

- $X \sim \operatorname{Binomial}(n, p)$ (where $0 \leq p \leq 1$): the number of heads in n independent flips of a coin with heads probability p.

$$
p(x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

- $X \sim \operatorname{Geometric}(p)$ (where $p>0$): the number of flips of a coin with heads probability p until the first heads.

$$
p(x)=p(1-p)^{x-1}
$$

Multi-Value Random Variable

- Suppose A can take on more than 2 values
- A is a random variable with arity k if it can take on exactly one value out of $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$
- Thus...

$$
\begin{aligned}
& P\left(A=v_{i} \wedge A=v_{j}\right)=0 \quad \text { if } i \neq j \\
& P\left(A=v_{1} \vee A=v_{2} \vee \ldots \vee A=v_{k}\right)=1 \\
& 1=\sum_{i=1}^{k} P\left(A=v_{i}\right)
\end{aligned}
$$

Multi-Value Random Variable

- We can also show that:

$$
\begin{aligned}
& P(B)=P\left(B \wedge\left[A=v_{1} \vee A=v_{2} \vee \ldots \vee A=v_{k}\right]\right) \\
& P(B)=\sum_{i=1}^{k} P\left(B \wedge A=v_{i}\right)
\end{aligned}
$$

- This is called marginalization over A

Continuous Random Variables

- $X: U \rightarrow V$ is continuous $R V$ if it takes infinite number of values
- The cumulative distribution function CDF $F: R \rightarrow\{0,1\}$ for X is defined for every value x by:

$$
F(x)=\operatorname{Pr}(X \leq x)
$$

- The probability distribution function $\operatorname{PDF} f(x)$ for X is

$$
f(x)=\mathrm{dF}(\mathrm{x}) / \mathrm{dx}
$$

Increasing

Example continuous RV

- $X \sim \operatorname{Uniform}(a, b)$ (where $a<b$): equal probability density to every value between a and b on the real line.

$$
f(x)= \begin{cases}\frac{1}{b-a} & \text { if } a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}
$$

- $X \sim$ Exponential (λ) (where $\lambda>0$): decaying probability density over the nonnegative reals.

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

- $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$: also known as the Gaussian distribution

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

Example CDFs and PDFs

Expectation and variance

Expectation for discrete random variable X

$$
E[g(X)] \triangleq \sum_{x \in \operatorname{Val}(X)} g(x) p_{X}(x) .
$$

Properties

- $E[a g(X)]=a E[g(X)]$
- Linearity: $E[f(X)+g(X)]=E[f(X)]+E[g(X)]$

Variance

$$
\operatorname{Var}[X] \triangleq E\left[(X-E(X))^{2}\right]
$$

$$
\begin{aligned}
E\left[(X-E[X])^{2}\right] & =E\left[X^{2}-2 E[X] X+E[X]^{2}\right] \\
& =E\left[X^{2}\right]-2 E[X] E[X]+E[X]^{2} \\
& =E\left[X^{2}\right]-E[X]^{2},
\end{aligned}
$$

Continuous RV

Expectation for continuous random variable X

$$
E[g(X)] \triangleq \int_{-\infty}^{\infty} g(x) f_{X}(x) d x .
$$

Variance is similar!
Example: Let X be uniform RV on [a,b]

- What is the CDF and PDF?
- Compute the expectation and variance of X

Conditional Probability

- $\mathrm{P}(A \mid B)=$ Fraction of worlds in which B is true that also have A true

What if we already know that B is true?

That knowledge changes the probability of A

- Because we know we're in a world where B is true

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \wedge B)}{P(B)} \\
P(A \wedge B) & =P(A \mid B) \times P(B)
\end{aligned}
$$

Def: Events A and B are independent if and only if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]
$$

If A and B are independent

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B]}{\operatorname{Pr}[B]}=\operatorname{Pr}[A]
$$

Inference from Conditional Probability

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \wedge B)}{P(B)} \\
P(A \wedge B) & =P(A \mid B) \times P(B)
\end{aligned}
$$

P (headache) $=1 / 10$
$\mathrm{P}(\mathrm{flu})=1 / 40$
$\mathrm{P}($ headache $\mid \mathrm{flu})=1 / 2$
"Headaches are rare and flu is rarer, but if you're coming down with the flu there's a 50-50 chance you'll have a headache."

Inference from Conditional Probability

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \wedge B)}{P(B)} \\
P(A \wedge B) & =P(A \mid B) \times P(B)
\end{aligned}
$$

P (headache) $=1 / 10$
$\mathrm{P}(\mathrm{flu})=1 / 40$
$P($ headache $\mid f l u)=1 / 2$
One day you wake up with a headache. You think: "Drat! 50\% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu."

Is this reasoning good?

Inference from Conditional Probability

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \wedge B)}{P(B)} \\
P(A \wedge B) & =P(A \mid B) \times P(B)
\end{aligned}
$$

```
P}(\mathrm{ headache) = 1/10
P(flu)=1/40
P(headache | flu) = 1/2
```

Want to solve for:
$\mathrm{P}($ headache $\wedge \mathrm{flu})=$?
P (flu | headache) $=$?
P (headache $\wedge \mathrm{flu})=\mathrm{P}($ headache $\mid \mathrm{flu}) \times \mathrm{P}(\mathrm{flu})$

$$
=1 / 2 \times 1 / 40=0.0125
$$

$$
\mathrm{P}(\mathrm{flu} \mid \text { headache }) \quad=\mathrm{P}(\text { headache } \wedge \text { flu }) / \mathrm{P} \text { (headache })
$$

$$
=0.0125 / 0.1=0.125
$$

Bayes' Rule

$$
P(A \mid B)=\frac{P(B \mid A) \times P(A)}{P(B)}
$$

- Exactly the process we just used
- The most important formula in probabilistic machine learning

```
(Super Easy) Derivation:
\(P(A \wedge B)=P(A \mid B) \times P(B)\)
\(P(B \wedge A)=P(B \mid A) \times P(A)\)
```


these are the same

Just set equal...

$$
\begin{aligned}
& P(A \mid B) \times P(B)=P(B \mid A) \times P(A) \\
& \text { and solve... }
\end{aligned}
$$

 solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418

Linear algebra

Vectors and matrices

- Vector in R^{n} is an ordered set of n real numbers.
- e.g. $v=(1,6,3,4)$ is in R^{4}
- A column vector:
- A row vector:

$$
\longrightarrow\left(\begin{array}{llll}
1 & 6 & 3 & 4
\end{array}\right)
$$

- m-by-n matrix is an object in $R^{m \times n}$ with m rows and n columns, each entry filled with a (typically) real number:
$\xrightarrow{\longrightarrow}\left(\begin{array}{ccc}1 & 2 & 8 \\ 4 & 78 & 6 \\ 9 & 3 & 2\end{array}\right)$

Norms

Vector norms: A norm of a vector ||x|| is informally a measure of the "length" of the vector.

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

- Common norms: $\mathrm{L}_{1}, \mathrm{~L}_{2}$ (Euclidean)

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \quad\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

$-L_{\text {infinity }}$

$$
\|x\|_{\infty}=\max _{i}\left|x_{i}\right|
$$

Vector products

We will use lower case letters for vectors The elements are referred by x_{i}.

- Vector dot (inner) product:

$$
\begin{aligned}
& \text { ot (inner) product: } \\
& x^{T} y \in \mathbb{R}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
x_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} y_{i} .
\end{aligned}
$$

If $u \cdot v=0,\|u\|_{2}!=0,\|v\|_{2}!=0 \rightarrow u$ and v are orthogonal If $u \cdot v=0,\|u\|_{2}=1,\|v\|_{2}=1 \rightarrow u$ and v are orthonormal

- Vector outer product:

$$
x y^{T} \in \mathbb{R}^{m \times n}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]\left[\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \cdots & x_{1} y_{n} \\
x_{2} y_{1} & x_{2} y_{2} & \cdots & x_{2} y_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m} y_{1} & x_{m} y_{2} & \cdots & x_{m} y_{n}
\end{array}\right]
$$

Matrix multiplication

We will use upper case letters for matrices. The elements are referred by $\mathrm{A}_{\mathrm{i}, \mathrm{j}}$.

- Matrix product:

$$
\begin{gathered}
A \in \mathbb{R}^{m \times n} \quad B \in \mathbb{R}^{n \times p} \\
C=A B \in \mathbb{R}^{m \times p} \\
C_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
\end{gathered}
$$

e.g.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \\
& A B=\left(\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right)
\end{aligned}
$$

Properties

- Associativity

$$
(A B) C=A(B C)
$$

- Distributivity

$$
A(B+C)=A B+A C
$$

- Commutativity

$$
A B=B A
$$

Special matrices

$$
\begin{gathered}
\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right) \text { Diagonal }\left(\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right) \text { Upper-triangular } \\
\left(\begin{array}{llll}
a & b & 0 & 0 \\
c & d & e & 0 \\
0 & f & g & h \\
0 & 0 & i & j
\end{array}\right) \text { Tri-diagonal }\left(\begin{array}{lll}
a & 0 & 0 \\
b & c & 0 \\
d & e & f
\end{array}\right) \text { Lower-triangular } \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { I (Identity matrix) }
\end{gathered}
$$

Matrix transpose

Transpose: You can think of it as

- "flipping" the rows and columns

OR

- "reflecting" vector/matrix on line

$$
\begin{array}{ll}
\text { e.g. }\binom{a}{b}^{T} & =\left(\begin{array}{ll}
a & b
\end{array}\right) \\
& \bullet\left(A^{T}\right)^{T}=A \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{T}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) & \text { • }(A B)^{T}=B^{T} A^{T} \\
& \text { (A+B})^{T}=A^{T}+B^{T}
\end{array}
$$

A is a symmetric matrix if $A=A^{T}$

References

Probability

- Review notes from Stanford's machine learning class
- Sam Roweis's probability review

Linear algebra

- Review notes from Stanford's machine learning class
- Sam Roweis's linear algebra review

