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Review

• To train neural networks, need to decide first on 
architecture
– Number of layers, number of hidden units, 

connections between neurons, activation functions

• Randomly initialize parameters

• For each training example, use forward 
propagation to compute prediction

• Use backpropagation to propagate the error from 
last layer back into the network

• Stochastic Gradient Descent with mini-batch 
update is the default optimization method
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Neural Network Architectures
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Feed-Forward Networks
• Neurons from each layer 

connect to neurons from 
next layer

Convolutional Networks
• Includes convolution layer 

for feature reduction
• Learns hierarchical 

representations

Recurrent Networks
• Keep hidden state
• Have cycles in 

computational graph



Feed-Forward Neural Network
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Convolutional Nets
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Mini-batch Gradient Descent

• Initialization
– For all layers ℓ

• Set 𝑊[ℓ], 𝑏[ℓ] at random

• Backpropagation
– Fix learning rate 𝛼

– For all layers ℓ (starting backwards)
• For all batches b of size B with training examples 𝑥(𝑖𝑏), 𝑦(𝑖𝑏)

–𝑊[ℓ] = 𝑊[ℓ] − 𝛼σ𝑖=1
𝐵 𝜕𝐿( ො𝑦(𝑖𝑏),𝑦(𝑖𝑏))

𝜕𝑊 ℓ

– 𝑏[ℓ] = 𝑏[ℓ] − 𝛼σ𝑖=1
𝐵 𝜕𝐿( ො𝑦(𝑖𝑏),𝑦(𝑖𝑏))

𝜕𝑏 ℓ
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Given training set 𝑥1, 𝑦1 , … , 𝑥𝑁, 𝑦𝑁
Initialize all parameters 𝑊[ℓ], 𝑏[ℓ] randomly, for all layers ℓ
Loop 

Training NN with Backpropagation
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Update weights via gradient step

• 𝑊𝑖𝑗
[ℓ]

= 𝑊𝑖𝑗
[ℓ]
− 𝛼

Δ𝑖𝑗
[ℓ]

𝑁

• Similar for 𝑏𝑖𝑗
[ℓ]

Until weights converge or maximum number of epochs is reached

EPOCH

(𝑥(𝑖), 𝑦(𝑖))

𝑦(𝑖)



Outline

• Recurrent Neural Networks (RNNs)

– One-to-one, one-to-many, many-to-one, many-to-
many

– Blog by Andrej Karpathy

• http://karpathy.github.io/2015/05/21/rnn-
effectiveness/

• Unsupervised learning

• Dimensionality reduction

– PCA
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RNN Architectures
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RNN Architectures
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RNN Architectures
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Recurrent Neural Network
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RNN: Computational Graph
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RNN: Computational Graph
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One-to-Many
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Many-to-Many
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Many-to-One
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Example: Language Model
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Example: Language Model
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Example: Language Model
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Training RNNs
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Training RNNs
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Writing poetry
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Writing poetry
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Writing geometry proofs
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Writing geometry proofs
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Example RNN: LSTM
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Capture long-term dependencies by using 
“memory cells”



LSTM
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Hidden 
State

Memory Cell



Summary RNNs

• RNNS maintain state and have flexible design

– One-to-many, many-to-one, many-to-many

• Applicable to sequential data

• LSTM is one example RNN architecture

• Better and simpler architectures are a topic of 
active research 
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Unsupervised Learning
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Unsupervised Learning

• Different learning tasks

• Dimensionality reduction
– Project the data to lower dimensional space

– Example: PCA (Principal Component Analysis)

• Feature learning
– Find feature representations

– Example: Autoencoders

• Clustering
– Group similar data points into clusters

– Example: k-means, hierarchical clustering
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Supervised vs Unsupervised Learning

33

Standard metrics 
for evaluation

Difficult to evaluate



How Can we Visualize High-
Dimensional Data?
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Data Visualization
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Principal Component Analysis
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The Principal Components
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2D Gaussian Data
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1st PCA Axis
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2nd PCA Axis
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PCA Example
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Eigenvectors

• Let A be a matrix and consider 𝐴𝑥 = 𝜆𝑥

• Terminology

– Eigenvalue of matrix: 𝜆

– Eigenvector: 𝑥 for which 𝐴𝑥 = 𝜆𝑥

• Connection to PCA

– First principal component is largest eigenvector of 
covariance matrix Σ = 𝑋𝑇𝑋

– Second principal component is orthogonal to first 
and second eigenvector of Σ
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Dimensionality Reduction 
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PCA Algorithm
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PCA
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PCA
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PCA
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Visualizing data
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Summary: PCA

• PCA creates a lower-dimensional feature 
representation
– Linear transformation

• Can be used for visualization

• Can be used with supervised on unsupervised 
learning
– Very common to use classification after PCA 

transformation

• Main drawback
– No interpretability of resulting features
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Unsupervised Learning

• Different learning tasks

• Dimensionality reduction
– Project the data to lower dimensional space

– Example: PCA (Principal Component Analysis)

• Feature learning
– Find feature representations

– Example: Autoencoders

• Clustering
– Group similar data points into clusters

– Example: k-means, hierarchical clustering
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Autoencoders
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Unsupervised approach for learning a lower-
dimensional feature representation from unlabeled 
training data



Autoencoders
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Autoencoders
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Autoencoders
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Autoencoders
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Training Autoencoders
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Decoders
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• Decoders are only useful in training
• Reconstruct original data



Using Features for Classification
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Summary Autoencoders

• Autoencoders can be used to learn new 
features

• Applicable to sparse data

• Minimize reconstruction error by using 
encoder and decoder

– Unsupervised (no labels on data)

• Encoder can be used as standalone with 
classification model
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