
DS 4400

Alina Oprea

Associate Professor, CCIS

Northeastern University

November 8 2018

Machine Learning and Data Mining I

Logistics

• HW 3 is due on Tuesday, November 13

• Project Milestone is due on Tuesday,
November 20

• Class on November 27 is cancelled

• Final project presentations

– Monday, December 3, 3-5:30pm in ISEC 655

• Final exam

– Tuesday, Dec 11, 2-5pm in ISEC 655

2

Review

• To train neural networks, need to decide first
on architecture
– Number of layers, number of hidden units,

connections between neurons, activation
functions

• Randomly initialize parameters

• For each training example, use forward
propagation to compute prediction

• Use backpropagation to propagate the error
from last layer back into the network

3

References

• Stanford tutorial on training Multi-Layer
Neural Networks
– http://ufldl.stanford.edu/tutorial/supervised/Mult

iLayerNeuralNetworks/

• Notes on backpropagation by Andrew Ng
– http://cs229.stanford.edu/notes/cs229-notes-

backprop.pdf

• Deep learning notes by Andrew Ng
– http://cs229.stanford.edu/notes/cs229-notes-

deep_learning.pdf

4

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
http://cs229.stanford.edu/notes/cs229-notes-backprop.pdf
http://cs229.stanford.edu/notes/cs229-notes-deep_learning.pdf

Outline

• Training with backpropagation

– Gradient-Descent Algorithm

– Derivation of gradients

– Stochastic and Mini-Batch Gradient Descent

• Lab

– MNIST dataset

• Regularization for Neural Networks

– L2/L1 regularization

– Dropout

5

Forward Propagation

6

Learning in NN: Backpropagation

7

Error at last layer can be measured, but it is
challenging to determine error at intermediate hidden
layers

GD for Neural Networks

• Initialization

– For all layers ℓ

• Set 𝑊[ℓ], 𝑏[ℓ]at random

• Backpropagation

– Fix learning rate 𝛼

– For all layers ℓ (starting backwards)

• 𝑊[ℓ] = 𝑊[ℓ] − 𝛼σ𝑖=1
𝑁 𝜕𝐿(ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑊 ℓ

• 𝑏[ℓ] = 𝑏[ℓ] − 𝛼σ𝑖=1
𝑁 𝜕𝐿(ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑏 ℓ

8

Example

9

Training data
Dimension d

𝑊[1] 𝑊[2] 𝑊[3]

𝑏[1] 𝑏[2] 𝑏[3]

𝑥𝑑
(𝑖)

Parameters are initialized
with random values (not
all 0)!

Backpropagation Intuition

10

𝑧1
[1]

→ 𝑎1
[1]

𝛿1
[1]

𝑧2
[1]

→ 𝑎2
[1]

𝛿2
[1]

𝑧1
[2]

→ 𝑎1
[2]

𝛿1
[2]

𝑧2
[2]

→ 𝑎2
[2]

𝛿2
[2]

𝑧1
[3]

→ 𝑎1
[3]

𝛿1
[3]

(𝑥(𝑖))

𝑐𝑜𝑠𝑡 𝑥(𝑖) = 𝑦(𝑖) log ℎ𝜃 𝑥(𝑖) + 1 − 𝑦(𝑖) log(1 − ℎ𝜃(𝑥
(𝑖)))

Backpropagation Intuition

11

𝑧1
[1]

→ 𝑎1
[1]

𝛿1
[1]

𝑧2
[1]

→ 𝑎2
[1]

𝛿2
[1]

𝑧1
[2]

→ 𝑎1
[2]

𝛿1
[2]

𝑧2
[2]

→ 𝑎2
[2]

𝛿2
(2)

𝑧1
[3]

→ 𝑎1
[3]

𝛿1
(3)

𝛿1
[3]

≈ 𝑎1
[3]

− 𝑦

𝑊21
[3]

𝛿2
[2]

≈ 𝛿1
[3]
W21

[3]

𝛿1
[3]

𝛿2
[2]

𝑐𝑜𝑠𝑡 𝑥(𝑖) = 𝑦(𝑖) log ℎ𝜃 𝑥(𝑖) + 1 − 𝑦(𝑖) log(1 − ℎ𝜃(𝑥
(𝑖)))

(𝑥(𝑖))

Backpropagation Intuition

12

𝑧1
[1]

→ 𝑎1
[1]

𝛿1
[1]

𝑧2
[1]

→ 𝑎2
[1]

𝛿2
(1)

𝑧1
[2]

→ 𝑎1
[2]

𝛿1
[2]

𝑧2
[2]

→ 𝑎2
[2]

𝛿2
(2)

𝑧1
[3]

→ 𝑎1
[3]

𝛿1
[3)

𝛿2
[1]

≈ 𝑊21
[2]
𝛿1
[2]

+𝑊22
[2]
𝛿2
[2]

𝑊21
[3]

𝛿1
[3]

𝛿2
[2]

𝑊22
[2]

𝑊21
[2]

𝛿2
[1]

𝑐𝑜𝑠𝑡 𝑥(𝑖) = 𝑦(𝑖) log ℎ𝜃 𝑥(𝑖) + 1 − 𝑦(𝑖) log(1 − ℎ𝜃(𝑥
(𝑖)))

(𝑥(𝑖))

Training

• Training data 𝑥(1) , y(1), … 𝑥(𝑁) , y(N)

• One training example 𝑥(𝑖) = 𝑥1
(𝑖)
, … 𝑥𝑑

(𝑖)
, label 𝑦(𝑖)

• One forward pass through the network

– Compute prediction ො𝑦(𝑖)

• Loss function for one example

– 𝐿 ො𝑦, 𝑦 = −[1 − 𝑦 log 1 − ො𝑦 + 𝑦 log ො𝑦]

• Loss function for training data

– 𝐽 𝑊, 𝑏 =
1

𝑁
σ𝑖 𝐿 (ො𝑦

(𝑖), 𝑦(𝑖)) + 𝜆𝑅(𝑊, 𝑏)

13

Cross-entropy loss

• Definitions

– 𝑧[ℓ] = 𝑊[ℓ] 𝑎 ℓ−1 + 𝑏[ℓ], 𝑎[ℓ] = 𝑔 𝑧 ℓ

– 𝛿[ℓ] =
𝜕𝐿(ො𝑦,𝑦)

𝜕𝑧[ℓ]

• For last layer L: 𝛿[𝐿] =
𝜕𝐿(ො𝑦,𝑦)

𝜕𝑧[𝐿]
=
𝜕𝐿(ො𝑦,𝑦)

෡𝜕 ො𝑦

𝜕 ො𝑦

෡𝜕 𝒛[𝑳]
=

𝜕𝐿(ො𝑦,𝑦)

෡𝜕 ො𝑦
𝑔′(𝑧[𝐿])

• For layer ℓ: 𝛿[ℓ] =
𝜕𝐿(ො𝑦,𝑦)

𝜕 𝑧 ℓ =
𝜕𝐿(ො𝑦,𝑦)

𝜕 𝑧 ℓ+1

𝜕𝑧 ℓ+1

𝜕𝑎[ℓ]
𝜕𝑎 ℓ

𝜕𝑧[ℓ]
=

𝛿[ℓ+1]𝑊[ℓ+1]𝑔′(𝑧[ℓ])

• Compute parameter gradients

–
𝜕𝐿(ො𝑦,𝑦)

𝜕 𝑊 ℓ =
𝜕𝐿(ො𝑦,𝑦)

𝜕 𝑧 ℓ

𝜕𝑧[ℓ]

𝜕𝑊 ℓ = 𝛿[ℓ]𝑎 ℓ−1 𝑇;
𝜕𝐿(ො𝑦,𝑦)

𝜕 𝑏 ℓ =
𝜕𝐿(ො𝑦,𝑦)

𝜕 𝑧 ℓ

𝜕𝑧[ℓ]

𝜕 𝑏 ℓ = 𝛿[ℓ]

Backpropagation

14

𝛿 [3]
𝛿 [2]𝛿 [1]

𝐿 𝑦, ො𝑦 = −[1 − 𝑦 log 1 − ො𝑦 + ylog ො𝑦]

Example: Last Layer (3)

• 𝛿[3] =
𝜕𝐿(ො𝑦,𝑦)

𝜕𝑧[3]
=

𝜕𝐿(ො𝑦,𝑦)

෡𝜕 ො𝑦
𝑔′ 𝑧 3 ; ො𝑦 = 𝑔 𝑧 3 = 𝑎[3]

•
𝜕𝐿(ො𝑦,𝑦)

෡𝜕 ො𝑦
= -

𝜕[1−𝑦 log 1−ො𝑦 +𝑦𝑙𝑜𝑔 ො𝑦]

෡𝜕 ො𝑦
=
1−𝑦

1−ො𝑦
−

𝑦

ො𝑦
=

ො𝑦−𝑦

ො𝑦(1− ො𝑦)

• 𝛿[3] =
ො𝑦−𝑦

ො𝑦(1− ො𝑦)
𝑔′ 𝑧 3

=
𝑎 3 −𝑦

𝑔 𝑧 3 1−𝑔 𝑧 3
g z 3 1 − g z 3 = a[3] − y

•
𝜕𝐿(ො𝑦,𝑦)

𝜕 𝑊 3 = 𝛿[3]𝑎 2 𝑇 = 𝑎 3 − 𝑦 𝑎 2 𝑇

•
𝜕𝐿(ො𝑦,𝑦)

𝜕 𝑏 3 = a[3] − y

15

𝑔 𝑥 = 𝜎 𝑥 =
1

1 + 𝑒−𝑥
𝑔′ 𝑥 = 𝜎′ 𝑥 = 𝜎 𝑥 (1 − 𝜎 𝑥)

Example: Layer 2

• 𝛿[2] =
𝜕𝐿(ො𝑦,𝑦)

𝜕𝑧[2]
= 𝛿[3]𝑊[3]𝑔′(𝑧[2])

•
𝜕𝐿(ො𝑦,𝑦)

𝜕 𝑊 2 = 𝛿[2]𝑎 1 𝑇 = 𝛿[3]𝑊[3]𝑔′(𝑧[2]) 𝑎 1 𝑇=

= [𝑎[3]−𝑦]𝑊[3]𝑔(𝑧[2]) (1- 𝑔(𝑧[2]))𝑎 1 𝑇

•
𝜕𝐿(ො𝑦,𝑦)

𝜕 𝑏 2 = [𝑎[3]−𝑦]𝑊[3]𝑔(𝑧[2]) (1− 𝑔(𝑧[2]))

16

𝑔 𝑥 = 𝜎 𝑥 =
1

1 + 𝑒−𝑥
𝑔′ 𝑥 = 𝜎′ 𝑥 = 𝜎 𝑥 (1 − 𝜎 𝑥)

Batch Perceptron

17

EPOCH

Backpropagation

18

Average gradient is
Δ𝑖𝑗
[ℓ]

𝑁

(𝑥(𝑖), 𝑦(𝑖))

𝑦(𝑖)

Given training set 𝑥1, 𝑦1 , … , 𝑥𝑁, 𝑦𝑁
Initialize all parameters 𝑊[ℓ], 𝑏[ℓ] randomly, for all layers ℓ
Loop

Training NN with Backpropagation

19

Update weights via gradient step

• 𝑊𝑖𝑗
[ℓ]

= 𝑊𝑖𝑗
[ℓ]

− 𝛼
Δ𝑖𝑗
[ℓ]

𝑁

• Similar for 𝑏𝑖𝑗
[ℓ]

Until weights converge or maximum number of epochs is reached

EPOCH

(𝑥(𝑖), 𝑦(𝑖))

𝑦(𝑖)

GD for Neural Networks

• Initialization

– For all layers ℓ

• Set 𝑊[ℓ], 𝑏[ℓ]at random

• Backpropagation

– Fix learning rate 𝛼

– For all layers ℓ (starting backwards)

• 𝑊[ℓ] = 𝑊[ℓ] − 𝛼σ𝑖=1
𝑁 𝜕𝐿(ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑊 ℓ

• 𝑏[ℓ] = 𝑏[ℓ] − 𝛼σ𝑖=1
𝑁 𝜕𝐿(ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑏 ℓ

20

This is
expensive!

Stochastic Gradient Descent (SGD)

• Initialization

– For all layers ℓ

• Set 𝑊[ℓ], 𝑏[ℓ]at random

• Backpropagation

– Fix learning rate 𝛼

– For all layers ℓ (starting backwards)

• For all training examples 𝑥(𝑖), 𝑦(𝑖)

–𝑊[ℓ] = 𝑊[ℓ] − 𝛼
𝜕𝐿(ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑊 ℓ

– 𝑏[ℓ] = 𝑏[ℓ] − 𝛼
𝜕𝐿(ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑏 ℓ

21

Incremental
version of GD

Mini-batch Gradient Descent

• Initialization
– For all layers ℓ

• Set 𝑊[ℓ], 𝑏[ℓ] at random

• Backpropagation
– Fix learning rate 𝛼

– For all layers ℓ (starting backwards)
• For all batches b of size B with training examples 𝑥(𝑖𝑏), 𝑦(𝑖𝑏)

–𝑊[ℓ] = 𝑊[ℓ] − 𝛼σ𝑖=1
𝐵 𝜕𝐿(ො𝑦(𝑖𝑏),𝑦(𝑖𝑏))

𝜕𝑊 ℓ

– 𝑏[ℓ] = 𝑏[ℓ] − 𝛼σ𝑖=1
𝐵 𝜕𝐿(ො𝑦(𝑖𝑏),𝑦(𝑖𝑏))

𝜕𝑏 ℓ

22

Gradient Descent Variants

23

Gradient Descent Variants

24

Training Neural Networks

25

Training Neural Networks

• Randomly initialize weights

• Implement forward propagation to get
prediction ෝ𝑦𝑖 for any training instance 𝑥𝑖

• Compute loss function 𝐿 ො𝑦𝑖 , 𝑦𝑖
• Implement backpropagation to compute

partial derivatives
𝜕𝐿(ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑊 ℓ and
𝜕𝐿(ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑏 ℓ

• Use gradient descent with backpropagation to
compute parameter values that optimize loss

26

MNIST: Handwritten digit recognition

27

Predict the digit
Multi-class classifier

Lab – Feed Forward NN

28

Import modules

Load MNIST data

Define NN architecture

29

500 hidden units
ReLU activation

Dropout regularization

Softmax activation

Loss function Optimizer

Train and evaluate

30

Run code

31

32

Epoch Output

Metrics
• Loss
• Accuracy

Plot Batch Loss

33

Outline

• Training with backpropagation

– Gradient-Descent Algorithm

– Derivation of gradients

– Stochastic and Mini-Batch Gradient Descent

• Lab

– MNIST dataset

• Regularization for Neural Networks

– L2/L1 regularization

– Dropout

34

Overfitting

35

• The larger the network, the higher the capacity
(more model parameters)

• But also more prone to overfitting!

Regularization

36

Weight decay

• When computing gradients of loss function, regularization
term needs to be taken into account

Dropout

37

• Regularization technique that has proven very
effective for deep learning

• Srivastava et al. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. Journal of Machine
Learning Research 15, 2014

Dropout

38

• At training time, sample a sub-network and learn
weights
• Keep each neuron with probability p

• At testing time, all neurons are there, but reduce
weight by a factor of p

Dropout

39

• 𝑟𝑖
(ℓ)

Is a random variable taking value 1 with

probability p and value 0 with probability 1-p

• Multiply output of each layer by 𝑟𝑖
(ℓ)

Results on MNIST

40

Hyper-parameter learning

• Architecture

– Number layers, hidden units, activation functions

• Regularization

• Learning rate

• Can tune hyper-parameters with cross-
validation

• More advanced techniques: meta learning

41

Acknowledgements

• Slides made using resources from:

– Yann LeCun

– Andrew Ng

– Eric Eaton

– David Sontag

– Andrew Moore

• Thanks!

