DS 4400

Machine Learning and Data Mining |

Alina Oprea
Associate Professor, CCIS
Northeastern University

November 8 2018



Logistics

HW 3 is due on Tuesday, November 13

Project Milestone is due on Tuesday,
November 20

Class on November 27 is cancelled

Final project presentations
— Monday, December 3, 3-5:30pm in ISEC 655

Final exam
— Tuesday, Dec 11, 2-5pm in ISEC 655



Review

To train neural networks, need to decide first
on architecture

— Number of layers, number of hidden units,
connections between neurons, activation
functions

Randomly initialize parameters

For each training example, use forward
propagation to compute prediction

Use backpropagation to propagate the error
from last layer back into the network



References

e Stanford tutorial on training Multi-Layer
Neural Networks

— http://ufldl.stanford.edu/tutorial/supervised/Mult
iLayerNeuralNetworks/

* Notes on backpropagation by Andrew Ng

— http://cs229.stanford.edu/notes/cs229-notes-
backprop.pdf

* Deep learning notes by Andrew Ng

— http://cs229.stanford.edu/notes/cs229-notes-
deep learning.pdf



http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
http://cs229.stanford.edu/notes/cs229-notes-backprop.pdf
http://cs229.stanford.edu/notes/cs229-notes-deep_learning.pdf

Outline

* Training with backpropagation
— Gradient-Descent Algorithm
— Derivation of gradients
— Stochastic and Mini-Batch Gradient Descent

e Lab
— MNIST dataset

* Regularization for Neural Networks
— L2/L1 regularization
— Dropout



Forward Propagation

* The input neurons first receive the
data features of the object. After
processing the data, they send their
output to the first hidden layer.

* The hidden layer processes this output
and sends the results to the next
hidden layer.

* This continues until the data reaches
the final output layer, where the
output value determines the object's
classification.

* This entire process is known as

Forward Propagation, or Forward prop.

2

o
4
o;o

s
X
X
\
KA
7AN
&

AN

tput layer

hidden layer 2

b
X

input layer

hidden layer 1



Learning in NN: Backpropagation

* Similar to the perceptron learning algorithm, we cycle
through our examples
— If the output of the network is correct, no changes are made
— If there is an error, weights are adjusted to reduce the error

* The trick is to assess the blame for the error and divide
it among the contributing weights

Error at last layer can be measured, but it is
challenging to determine error at intermediate hidden
layers



GD for Neural Networks

e |nitialization
— For all layers £
e Set W[f],bw]at random

* Backpropagation
— Fix learning rate
— For all layers € (starting backwards)

. W = —gq¥N Le®yH)
owl?]

e plfl = plf1 _ ;YN oL W,y®)
b b )i T




Training data

Dimension d f
MO
d

21 = it 4 i

al = g(21") Parameters are initialized
2 = Wl 4 P with random values (not
a?l = g(z) all 0)!

O HE e e
ﬂ[i] — r'L[:J'] — ﬂ.{_—:m:]



Backpropagation Intuition

\

\ \ \

* \
@ \u @ \\ @

\

\ 4

\ \ .-‘{

\ \ -/

@ 1 /

o) = “error” of node jin layer [

Formally, 5;” =

cost(x(i)) = y(i) log hg (x(i)) + (1 — y(i))log(l — hg (x(i)))

10



Backpropagation Intuition

NEDRED)
@v@
RFIAC

5[31

'n
A _)a7

21

3 3
517 ~ ¥ _y

2] _ <[3lyps[3]
o) = “error” of node jin layer [ 0y &0y W

Formally, 5;” =

cost(x(i)) =y log hg (x(i)) + (1 — y(i))log(l — hg(x™))

11



Backpropagation Intuition

o) = “error” of node jin layer [

Formally, 5;” =

cost (x®)
9z

J
cost(x(i)) =y log hg (X(i)) + (1 — y(i))log(l — ho(x¥))

12



Training

Training data x(1), y() | x (V) y(N)
One training example x® = (xf),. ()) label y®)

One forward pass through the network
— Compute prediction y@)

Loss function for one example

- L@, y) =—[(1—y)log(1—9) + ylogJ]

Cross-entropy loss

Loss function for training data

—JW,b) =~ %L 3D,y D) + AR(W, b)



Backpropagation
Let 5 = “error” of node jin layer I ~

L(y,y) = —[(1 —y)log(1 —9) + ylog J]

Definitions
— Z[f] — W[‘g] a[g_l] 4+ b[f], a[e] — g(Z[‘E])

2l _ OL(Y.Y)
_ Sl = =T

14



Example: Last Layer (3)

oL(y.y) _ aL(y y)

S8l = B = g (Z ) y = g(Z ) al3!
oLyy)_ 9dl(1-y) 10g(1 V+ylog¥yl_1-y ¥y _ IV
09 09 37 y  30-9)
[3] 7131

6 y(l y)g( )

[3]_
_ a _ [311) = 5[3] —
9(2[3)(1 g(z[3 )g(Z )(1 g(Z )) 4 y

OL(YY)_
aW[B 6 (Cl _y)a[Z]T

aL(Y.y) _ I3
GoBl =2 =Y

gx) =o(x) =7 e
gx)=0'(kx)=0x)(1-0ox))

15



Example: Layer 2

oL(9, ’
. 52 = a%v):(g[s]wmg (z12])

. 0;;95]) = 52T = sBly 31 g/ (4121) glUIT -
= [aBl-ylWPlg(z)) (1- g(z#))a! ™

JdL(y,
+ B = [alFl—ywBlg z17) (1- g(z1?)

g(x) =o(x) = T o=
g'(x) =0'(x) =c(x)(1 - 0d(x))

16



Batch Perceptron

T

Given training data {(m(‘"") , y(i))}

Let 8 < [0,0,....0] =
Repeat:
Let A « [0,0,...,0] EPOCH
fori=1...n, do
if y('?"):x:("")G <0 // prediction for i*" instance is incorrect
A — A+ yDgl)
A A/n // compute average update
0 <— 0+ aA

Until ||Alla < €

* Simplest case: a =1 and don’t normalize, yields the fixed
increment perceptron

* Each increment of outer loop is called an epoch

17



Set A} =0 Vi,i,j

Backpropagation

For each training instance (x®,y®)

Set all) = x;

Compute {a®,...,a%)} via forward propagation
Compute 61 = all) — ,®
Compute errors {§F=D . §(2)}

Compute gradients A,E._l) =AY + a.,(.l)ci.(lﬂ)

J 1]

Alf)

Average gradient is %

(Used to accumulate gradient)

18



Training NN with Backpropagation

Given training set (x1, V1), ..., (Xn, V)
Initialize all parameters W] bl*I randomly, for all layers ¢
Loop

Set A{) =0 VI,i,

For each training instance (x®,y®)
Set all) = x;
Compute {al?), ..., a)} via forward propagation ~ EPQCH
Compute 6% = all) — y®

Compute errors {1, 32} | |
Compute gradients A,E? = Af? + a..g”dg_l—”
Update weights via gradient step
€ _ e A
o — oyt
Wi =wl - o

L£]
Lj
Until weights converge or maximum number of epochs is reached

e Similarfor b



GD for Neural Networks

e |nitialization
— For all layers ¢
e Set W[f],b[ﬂat random

* Backpropagation
— Fix learning rate
— For all layers € (starting backwards)

. W = —gq¥N Le®yH)
2] .
w This is
o plél = plél — gy N oL@y expensive!

apltl




Stochastic Gradient Descent (SGD)

e |nitialization
— For all layers ¢
e Set W[f],bw]at random

* Backpropagation
— Fix learning rate
— For all layers € (starting backwards)

e For all training examples x(), y(®

o — yie _ oYy 9)
Wil =Wl — o= Incremental

aL( D,y D) version of GD
opltl

—pltl = plt] — ¢

21



Mini-batch Gradient Descent

* |nitialization
— For all layers ¢
e Set Wl plt] at random
* Backpropagation
— Fix learning rate a

— For all layers € (starting backwards)
* For all batches b of size B with training examples x(ib),y(ib)

— Wl = —q¥B Loy
owl?]
—plfl = pl&l — g 3B LD,y

dpl?]



Gradient Descent Variants

Batch Gradient Descent
Mini-batch Gradient Descent
Stochastic Gradient Descent

23



Gradient Descent Variants

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

24



Training Neural Networks

Pick a network architecture (connectivity pattern between nodes)

* #input units = # of features in dataset

* # output units = # classes

Reasonable default: 1 hidden layer

* orif >1 hidden layer, have same # hidden units in
every layer (usually the more the better)

25



Training Neural Networks

Randomly initialize weights

mplement forward propagation to get
orediction y; for any training instance x;

Compute loss function L(¥;, y;)

Implement backpropagation to compute

oL(yW,yM) oLy W,yM)
owter . And =50

Use gradient descent with backpropagation to

compute parameter values that optimize loss

partial derivatives



MNIST: Handwritten digit recognition

Ol /14D Y
<l[e][7]2] [

Images are 28 x 28 pixels

Represent input image as a vector x € R784

Learn a classifier f(x) such that,

Predict the digit
Multi-class classifier



Lab — Feed Forward NN

import time
~import numpy as np
from keras.utils import np_utils
import keras.callbacks as cb
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import RMSprop
from keras.datasets import mnist]

import matplotlib
matplotlib.use( 'agg ')
import matplotlib.pyplot as plt

def load_data():
print(“Loading data")
(X_train, y_train), (X test, y test) = mnist.load_data()

X_train = X_train.astype( 'float3z"}
X_test = X_test.astype( 'floagt32")

X_train /= 255
X_test /= 255

y_train = np_utils.to_categorical(y_train, 18)
y_test = np_utils.to_categorical(y_test, 18)

X_train = np.reshape(X_train, (Eeeea, 784))
X_test = np.reshape(X_test, (1l@eas, 784))

print{"Data loaded")
return [X_train, X_test, y_train, y_test]

Import modules

Load MNIST data

28



Define NN architecture

def init_model():
start_time = time.time()

print{"Compiling Model"™)

model = Sequential()
model.add(Dense(5@@, input_dim=784))
model . add(Activation( ‘relu’))
model.add (Dropout(©.4))

model . add(Dense(388) )

model . add(Activation( ‘relu’))

model.add(Dropout(@.4)) Dropout regularization
model.add(Dense(18))

model.add(Activation( 'softmax')) Softmax activation

500 hidden units
ReLU activation

vV Vv

A 4

v

rms = RMSprop()
model.compile(loss='categorical_crossentropy’', optimizer=rms, metrics=[ 'accuracy'])

print( "Model finished"+format(fime.time() - start_time))
return model

Loss function Optimizer

29



Train and evaluate

def run_network(data=None, model=None, epochs=28, batch=258):

try:

start_time = time.time()
if data is None:

¥_train, X_test, y_train, y_test = load_data()
else:

¥_train, X_test, y_train, y_test = data

if model is None:
model = init_model()

history = LossHistory()

print("Training model")

model . fit(X_train, y_train, nb_epoch=epochs, batch_size=batch,
callbacks=[history],
walidation_data=(X_test, y_test), verbose=2)

print{“Training duration:"+format(time.time() - start_time))
score = model.evaluate(X_test, y_test, batch_size=18)

print({"\nNetwork 's test loss and accuracy:"+format(score))
return model, history.losses

v

class LossHistory(cb.Callback):
def on_train_begin(self, logs={}):
self.losses = []

def on_batch_end(self, batch, logs={}):

batch_loss = logs.get('loss’)
self.losses.append(batch_loss)

30



Run code

model, losses = run_network()




Epoch Output

Metrics
* Loss
* Accuracy




Plot Batch Loss

def plot_losses(losses):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(losses)
ax.set_title("Loss per batch")
fig.show()
plt.savefig( 'output.png’)

plot_losses(losses)

2.5

Loss per batch

2.0

1.5+

1.0 4

0.5 1

0.0

T
1000

T
2000

T
3000

T
4000

33



Outline

* Training with backpropagation
— Gradient-Descent Algorithm
— Derivation of gradients
— Stochastic and Mini-Batch Gradient Descent

e Lab
— MNIST dataset

* Regularization for Neural Networks
— L2/L1 regularization
— Dropout



Overfitting

 The larger the network, the higher the capacity
(more model parameters)
* But also more prone to overfitting!

35



Regularization

N
g Z flz;, W),y;) +AR(W) )\ = regularization strength
\N i—1 ) (hyperparameter)
o R/_/

Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data

L2 reqularization: R(W) = >, >, W}, > Weight decay
L1 regularization: R(W) =Y., >, [Wky|
Elastic net (L1 + L2): R(W) = ¥, 5, AW2, + Wi

* When computing gradients of loss function, regularization
term needs to be taken into account

36



(b) After applying dropout.
Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:

An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

* Regularization technique that has proven very
effective for deep learning

* Srivastava et al. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. Journal of Machine
Learning Research 15, 2014

37



Dropout

W

Present with Always
probability p present
(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.

e Attraining time, sample a sub-network and learn
weights
e Keep each neuron with probability p
* Attesting time, all neurons are there, but reduce
weight by a factor of p



{41)
(¢

1) Standard network

(b) Dropout network

Figure 3: Comparison of the basic operations of a standard and dropout network.

. ’ri({))ls a random variable taking value 1 with

probability p and value 0 with probability 1-p

* Multiply output of each layer by ri({))

39



Results on MNIST

Classification Errar %

T

0 200000 400000 $00000 B00D0O 1000000
Number of weight updatas

Figure 4: Test error for different architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.

40



Hyper-parameter learning

Architecture

— Number layers, hidden units, activation functions
Regularization
Learning rate

Can tune hyper-parameters with cross-
validation

More advanced techniques: meta learning



Acknowledgements

* Slides made using resources from:
— Yann LeCun
— Andrew Ng
— Eric Eaton
— David Sontag
— Andrew Moore

* Thanks!



