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Logistics

• HW 3 is due on Tuesday, November 13

• Project Milestone is due on Tuesday, 
November 20

• Class on November 27 is cancelled

• Final project presentations

– Monday, December 3, 3-5:30pm in ISEC 655

• Final exam

– Tuesday, Dec 11, 2-5pm in ISEC 655
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Review

• To train neural networks, need to decide first 
on architecture
– Number of layers, number of hidden units, 

connections between neurons, activation 
functions

• Randomly initialize parameters

• For each training example, use forward 
propagation to compute prediction

• Use backpropagation to propagate the error 
from last layer back into the network
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References

• Stanford tutorial on training Multi-Layer 
Neural Networks
– http://ufldl.stanford.edu/tutorial/supervised/Mult

iLayerNeuralNetworks/

• Notes on backpropagation by Andrew Ng
– http://cs229.stanford.edu/notes/cs229-notes-

backprop.pdf

• Deep learning notes by Andrew Ng
– http://cs229.stanford.edu/notes/cs229-notes-

deep_learning.pdf
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Outline

• Training with backpropagation

– Gradient-Descent Algorithm

– Derivation of gradients

– Stochastic and Mini-Batch Gradient Descent

• Lab

– MNIST dataset

• Regularization for Neural Networks

– L2/L1 regularization

– Dropout
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Forward Propagation
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Learning in NN: Backpropagation
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Error at last layer can be measured, but it is 
challenging to determine error at intermediate hidden 
layers



GD for Neural Networks

• Initialization

– For all layers ℓ

• Set 𝑊[ℓ], 𝑏[ℓ]at random

• Backpropagation

– Fix learning rate 𝛼

– For all layers ℓ (starting backwards)

• 𝑊[ℓ] = 𝑊[ℓ] − 𝛼σ𝑖=1
𝑁 𝜕𝐿( ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑊 ℓ

• 𝑏[ℓ] = 𝑏[ℓ] − 𝛼σ𝑖=1
𝑁 𝜕𝐿( ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑏 ℓ
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Example
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Training data
Dimension d

𝑊[1] 𝑊[2] 𝑊[3]

𝑏[1] 𝑏[2] 𝑏[3]

𝑥𝑑
(𝑖)

Parameters are initialized 
with random values (not 
all 0)!



Backpropagation Intuition
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𝑧1
[1]

→ 𝑎1
[1]

𝛿1
[1]

𝑧2
[1]

→ 𝑎2
[1]

𝛿2
[1]

𝑧1
[2]

→ 𝑎1
[2]

𝛿1
[2]

𝑧2
[2]

→ 𝑎2
[2]

𝛿2
[2]

𝑧1
[3]

→ 𝑎1
[3]

𝛿1
[3]

(𝑥(𝑖))

𝑐𝑜𝑠𝑡 𝑥(𝑖) = 𝑦(𝑖) log ℎ𝜃 𝑥(𝑖) + 1 − 𝑦(𝑖) log(1 − ℎ𝜃(𝑥
(𝑖)))



Backpropagation Intuition
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𝑧1
[1]

→ 𝑎1
[1]

𝛿1
[1]

𝑧2
[1]

→ 𝑎2
[1]

𝛿2
[1]

𝑧1
[2]

→ 𝑎1
[2]

𝛿1
[2]

𝑧2
[2]

→ 𝑎2
[2]

𝛿2
(2)

𝑧1
[3]

→ 𝑎1
[3]

𝛿1
(3)

𝛿1
[3]

≈ 𝑎1
[3]

− 𝑦

𝑊21
[3]

𝛿2
[2]

≈ 𝛿1
[3]
W21

[3]

𝛿1
[3]

𝛿2
[2]

𝑐𝑜𝑠𝑡 𝑥(𝑖) = 𝑦(𝑖) log ℎ𝜃 𝑥(𝑖) + 1 − 𝑦(𝑖) log(1 − ℎ𝜃(𝑥
(𝑖)))

(𝑥(𝑖))



Backpropagation Intuition
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𝑧1
[1]

→ 𝑎1
[1]

𝛿1
[1]

𝑧2
[1]

→ 𝑎2
[1]

𝛿2
(1)

𝑧1
[2]

→ 𝑎1
[2]

𝛿1
[2]

𝑧2
[2]

→ 𝑎2
[2]

𝛿2
(2)

𝑧1
[3]

→ 𝑎1
[3]

𝛿1
[3)

𝛿2
[1]

≈ 𝑊21
[2]
𝛿1
[2]

+𝑊22
[2]
𝛿2
[2]

𝑊21
[3]

𝛿1
[3]

𝛿2
[2]

𝑊22
[2]

𝑊21
[2]

𝛿2
[1]

𝑐𝑜𝑠𝑡 𝑥(𝑖) = 𝑦(𝑖) log ℎ𝜃 𝑥(𝑖) + 1 − 𝑦(𝑖) log(1 − ℎ𝜃(𝑥
(𝑖)))

(𝑥(𝑖))



Training

• Training data 𝑥(1) , y(1), … 𝑥(𝑁) , y(N)

• One training example 𝑥(𝑖) = 𝑥1
(𝑖)
, … 𝑥𝑑

(𝑖)
, label 𝑦(𝑖)

• One forward pass through the network

– Compute prediction ො𝑦(𝑖)

• Loss function for one example

– 𝐿 ො𝑦, 𝑦 = −[ 1 − 𝑦 log 1 − ො𝑦 + 𝑦 log ො𝑦]

• Loss function for training data

– 𝐽 𝑊, 𝑏 =
1

𝑁
σ𝑖 𝐿 ( ො𝑦

(𝑖), 𝑦(𝑖)) + 𝜆𝑅(𝑊, 𝑏)
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Cross-entropy loss



• Definitions

– 𝑧[ℓ] = 𝑊[ℓ] 𝑎 ℓ−1 + 𝑏[ℓ], 𝑎[ℓ] = 𝑔 𝑧 ℓ

– 𝛿[ℓ] =
𝜕𝐿( ො𝑦,𝑦)

𝜕𝑧[ℓ]

• For last layer L: 𝛿[𝐿] =
𝜕𝐿( ො𝑦,𝑦)

𝜕𝑧[𝐿]
=
𝜕𝐿( ො𝑦,𝑦)

෡𝜕 ො𝑦

𝜕 ො𝑦

෡𝜕 𝒛[𝑳]
=

𝜕𝐿( ො𝑦,𝑦)

෡𝜕 ො𝑦
𝑔′(𝑧[𝐿])

• For layer ℓ: 𝛿[ℓ] =
𝜕𝐿( ො𝑦,𝑦)

𝜕 𝑧 ℓ =
𝜕𝐿( ො𝑦,𝑦)

𝜕 𝑧 ℓ+1

𝜕𝑧 ℓ+1

𝜕𝑎[ℓ]
𝜕𝑎 ℓ

𝜕𝑧[ℓ]
= 

𝛿[ℓ+1]𝑊[ℓ+1]𝑔′(𝑧[ℓ])

• Compute parameter gradients

–
𝜕𝐿( ො𝑦,𝑦)

𝜕 𝑊 ℓ =
𝜕𝐿( ො𝑦,𝑦)

𝜕 𝑧 ℓ

𝜕𝑧[ℓ]

𝜕𝑊 ℓ = 𝛿[ℓ]𝑎 ℓ−1 𝑇;
𝜕𝐿( ො𝑦,𝑦)

𝜕 𝑏 ℓ =
𝜕𝐿( ො𝑦,𝑦)

𝜕 𝑧 ℓ

𝜕𝑧[ℓ]

𝜕 𝑏 ℓ = 𝛿[ℓ]

Backpropagation
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𝛿 [3]
𝛿 [2]𝛿 [1]

𝐿 𝑦, ො𝑦 = −[ 1 − 𝑦 log 1 − ො𝑦 + ylog ො𝑦]



Example: Last Layer (3)

• 𝛿[3] =
𝜕𝐿( ො𝑦,𝑦)

𝜕𝑧[3]
=

𝜕𝐿( ො𝑦,𝑦)

෡𝜕 ො𝑦
𝑔′ 𝑧 3 ; ො𝑦 = 𝑔 𝑧 3 = 𝑎[3]

•
𝜕𝐿( ො𝑦,𝑦)

෡𝜕 ො𝑦
= -

𝜕[ 1−𝑦 log 1−ො𝑦 +𝑦𝑙𝑜𝑔 ො𝑦]

෡𝜕 ො𝑦
= 
1−𝑦

1−ො𝑦
−

𝑦

ො𝑦
=

ො𝑦−𝑦

ො𝑦(1− ො𝑦)

• 𝛿[3] =
ො𝑦−𝑦

ො𝑦(1− ො𝑦)
𝑔′ 𝑧 3

=
𝑎 3 −𝑦

𝑔 𝑧 3 1−𝑔 𝑧 3
g z 3 1 − g z 3 = a[3] − y

•
𝜕𝐿( ො𝑦,𝑦)

𝜕 𝑊 3 = 𝛿[3]𝑎 2 𝑇 = 𝑎 3 − 𝑦 𝑎 2 𝑇

•
𝜕𝐿( ො𝑦,𝑦)

𝜕 𝑏 3 = a[3] − y

15

𝑔 𝑥 = 𝜎 𝑥 =
1

1 + 𝑒−𝑥
𝑔′ 𝑥 = 𝜎′ 𝑥 = 𝜎 𝑥 (1 − 𝜎 𝑥 )



Example: Layer 2

• 𝛿[2] =
𝜕𝐿( ො𝑦,𝑦)

𝜕𝑧[2]
= 𝛿[3]𝑊[3]𝑔′(𝑧[2])

•
𝜕𝐿( ො𝑦,𝑦)

𝜕 𝑊 2 = 𝛿[2]𝑎 1 𝑇 = 𝛿[3]𝑊[3]𝑔′(𝑧[2]) 𝑎 1 𝑇=

= [𝑎[3]−𝑦]𝑊[3]𝑔(𝑧[2]) (1- 𝑔(𝑧[2]))𝑎 1 𝑇

•
𝜕𝐿( ො𝑦,𝑦)

𝜕 𝑏 2 = [𝑎[3]−𝑦]𝑊[3]𝑔(𝑧[2]) (1− 𝑔(𝑧[2]))
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𝑔 𝑥 = 𝜎 𝑥 =
1

1 + 𝑒−𝑥
𝑔′ 𝑥 = 𝜎′ 𝑥 = 𝜎 𝑥 (1 − 𝜎 𝑥 )



Batch Perceptron
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EPOCH



Backpropagation
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Average gradient is 
Δ𝑖𝑗
[ℓ]

𝑁

(𝑥(𝑖), 𝑦(𝑖))

𝑦(𝑖)



Given training set 𝑥1, 𝑦1 , … , 𝑥𝑁, 𝑦𝑁
Initialize all parameters 𝑊[ℓ], 𝑏[ℓ] randomly, for all layers ℓ
Loop 

Training NN with Backpropagation
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Update weights via gradient step

• 𝑊𝑖𝑗
[ℓ]

= 𝑊𝑖𝑗
[ℓ]

− 𝛼
Δ𝑖𝑗
[ℓ]

𝑁

• Similar for 𝑏𝑖𝑗
[ℓ]

Until weights converge or maximum number of epochs is reached

EPOCH

(𝑥(𝑖), 𝑦(𝑖))

𝑦(𝑖)



GD for Neural Networks

• Initialization

– For all layers ℓ

• Set 𝑊[ℓ], 𝑏[ℓ]at random

• Backpropagation

– Fix learning rate 𝛼

– For all layers ℓ (starting backwards)

• 𝑊[ℓ] = 𝑊[ℓ] − 𝛼σ𝑖=1
𝑁 𝜕𝐿( ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑊 ℓ

• 𝑏[ℓ] = 𝑏[ℓ] − 𝛼σ𝑖=1
𝑁 𝜕𝐿( ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑏 ℓ
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This is 
expensive!



Stochastic Gradient Descent (SGD)

• Initialization

– For all layers ℓ

• Set 𝑊[ℓ], 𝑏[ℓ]at random

• Backpropagation

– Fix learning rate 𝛼

– For all layers ℓ (starting backwards)

• For all training examples 𝑥(𝑖), 𝑦(𝑖)

–𝑊[ℓ] = 𝑊[ℓ] − 𝛼
𝜕𝐿( ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑊 ℓ

– 𝑏[ℓ] = 𝑏[ℓ] − 𝛼
𝜕𝐿( ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑏 ℓ
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Incremental 
version of GD



Mini-batch Gradient Descent

• Initialization
– For all layers ℓ

• Set 𝑊[ℓ], 𝑏[ℓ] at random

• Backpropagation
– Fix learning rate 𝛼

– For all layers ℓ (starting backwards)
• For all batches b of size B with training examples 𝑥(𝑖𝑏), 𝑦(𝑖𝑏)

–𝑊[ℓ] = 𝑊[ℓ] − 𝛼σ𝑖=1
𝐵 𝜕𝐿( ො𝑦(𝑖𝑏),𝑦(𝑖𝑏))

𝜕𝑊 ℓ

– 𝑏[ℓ] = 𝑏[ℓ] − 𝛼σ𝑖=1
𝐵 𝜕𝐿( ො𝑦(𝑖𝑏),𝑦(𝑖𝑏))

𝜕𝑏 ℓ
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Gradient Descent Variants
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Gradient Descent Variants
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Training Neural Networks
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Training Neural Networks

• Randomly initialize weights

• Implement forward propagation to get 
prediction ෝ𝑦𝑖 for any training instance 𝑥𝑖

• Compute loss function 𝐿 ො𝑦𝑖 , 𝑦𝑖
• Implement backpropagation to compute 

partial derivatives 
𝜕𝐿( ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑊 ℓ and
𝜕𝐿( ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑏 ℓ

• Use gradient descent with backpropagation to 
compute parameter values that optimize loss
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MNIST: Handwritten digit recognition
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Predict the digit
Multi-class classifier



Lab – Feed Forward NN
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Import modules

Load MNIST data



Define NN architecture
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500 hidden units
ReLU activation

Dropout regularization

Softmax activation

Loss function Optimizer



Train and evaluate
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Run code
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Epoch Output

Metrics
• Loss
• Accuracy



Plot Batch Loss
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Outline

• Training with backpropagation

– Gradient-Descent Algorithm

– Derivation of gradients

– Stochastic and Mini-Batch Gradient Descent

• Lab

– MNIST dataset

• Regularization for Neural Networks

– L2/L1 regularization

– Dropout
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Overfitting
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• The larger the network, the higher the capacity 
(more model parameters)

• But also more prone to overfitting!



Regularization
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Weight decay

• When computing gradients of loss function, regularization 
term needs to be taken into account



Dropout
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• Regularization technique that has proven very 
effective for deep learning

• Srivastava et al. Dropout: A Simple Way to Prevent 
Neural Networks from Overfitting. Journal of Machine 
Learning Research 15,  2014



Dropout
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• At training time, sample a sub-network and learn 
weights
• Keep each neuron with probability p

• At testing time, all neurons are there, but reduce 
weight by a factor of p



Dropout

39

• 𝑟𝑖
(ℓ)

Is a random variable taking value 1 with 

probability p and value 0 with probability 1-p

• Multiply output of each layer by 𝑟𝑖
(ℓ)



Results on MNIST
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Hyper-parameter learning

• Architecture 

– Number layers, hidden units, activation functions

• Regularization 

• Learning rate

• Can tune hyper-parameters with cross-
validation

• More advanced techniques: meta learning
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