DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

November 6 2018

Review

- Deep Learning has the ability to learn hierarchy of features
 - Performs better with more training data
- Neural Networks can be shallow or deep
 - Their power is given by non-linear activations
 - XOR can be learned with 1 hidden layer
- Feed-Forward architectures
 - Multi-Layer Perceptron (MLP) is fully connected
 - Convolutional Neural Networks
 - Activation functions: sigmoid, ReLU, tanh
 - Can be used with sigmoid in last layer for binary classification and softmax for multi-class classification

Outline

- Convolutional Neural Networks
 - Recap: convolution layer
 - Max pooling
 - Architectures
- Training with backpropagation
 - Initialization
 - Derivation of gradients
 - Example

Convolutional Nets

- Particular type of Feed-Forward Neural Nets

 Invented by [LeCun 89]
- Applicable to data with natural grid topology

 Time series
 - Images
- Use convolutions on at least one layer
 - Convolution is a linear operation
 - Also use pooling operation
 - Used for dimensionality reduction and learning hierarchical feature representations

Convolutional Nets

Convolutions

A closer look at spatial dimensions:

Convolutions with stride

7x7 input (spatially) assume 3x3 filter applied **with stride 2**

=> 3x3 output!

Convolution Layer

Convolution Layer

Summary: Convolution Layer

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $\circ W_2 = (W_1 F + 2P)/S + 1$
 - $\circ~H_2=(H_1-F+2P)/S+1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Convolution layer: Takeaways

- Convolution is a linear operation
 - Reduces parameter space of Feed-Forward Neural Network considerably
 - Capture locality of pixels in images
 - Smaller filters need less parameters
 - Multiple filters in each layer (computation can be done in parallel)
- Convolutions are followed by activation functions
 - Typically ReLU

Convolutional Nets

Pooling layer

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Max Pooling

Single depth slice

x	1	1	2	4
	5	6	7	8
	3	2	1	0
	1	2	3	4

max pool with 2x2 filters and stride 2

У

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires three hyperparameters:
 - their spatial extent F,
 - \circ the stride S,
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $\circ W_2 = (W_1 F)/S + 1$
 - $\circ H_2 = (H_1 F)/S + 1$
 - $\circ D_2 = D_1$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Convolutional Nets

Fully Connected Layer (FC layer)

 Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

LeNet 5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

History

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

VGGNet

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet) -> 7.3% top 5 error in ILSVRC'14

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

138 million parameters

GoogLeNet

Case Study: GoogLeNet

[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!
 12x less than AlexNet
- ILSVRC'14 classification winner (6.7% top 5 error)

Inception module

Summary CNNs

- Convolutional Nets are Feed-Forward Networks with at least one convolution layer and optionally max pooling layers
- Convolutions enable dimensionality reduction
- Much fewer parameters relative to Feed-Forward Neural Networks
 - Deeper networks with multiple small filters at each layer is a trend
- Fully connected layer at the end (fewer parameters)
- Learn hierarchical feature representations
 Data with natural grid topology (images, maps)
- Reached human-level performance in ImageNet in 2014

Outline

- Convolutional Neural Networks
 - Recap: convolution layer
 - Max pooling
 - Architectures
- Training with backpropagation
 - Initialization
 - Derivation of gradients
 - Example

Feed-Forward Neural Network

No cycles

Forward Propagation

- The input neurons first receive the data features of the object. After processing the data, they send their output to the first hidden layer.
- The hidden layer processes this output and sends the results to the next hidden layer.
- This continues until the data reaches the final output layer, where the output value determines the object's classification.
- This entire process is known as Forward Propagation, or Forward prop.

Perceptron Learning

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha(y - h(\mathbf{x}))\mathbf{x}$$

Equivalent to the intuitive rules:

- If output is correct, don't change the weights
- If output is low ($h(\mathbf{x}) = 0, y = 1$), increment weights for all the inputs which are 1
- If output is high ($h(\mathbf{x}) = 1, y = 0$), decrement weights for all inputs which are 1

Perceptron Convergence Theorem:

• If there is a set of weights that is consistent with the training data (i.e., the data is linearly separable), the perceptron learning algorithm will converge [Minicksy & Papert, 1969]

Batch Perceptron

Given training data
$$\{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^{n}$$

Let $\boldsymbol{\theta} \leftarrow [0, 0, \dots, 0]$
Repeat:
Let $\boldsymbol{\Delta} \leftarrow [0, 0, \dots, 0]$
for $i = 1 \dots n$, do
if $y^{(i)} \boldsymbol{x}^{(i)} \boldsymbol{\theta} \leq 0$ // prediction for ith instance is incorrect
 $\boldsymbol{\Delta} \leftarrow \boldsymbol{\Delta} + y^{(i)} \boldsymbol{x}^{(i)}$
 $\boldsymbol{\Delta} \leftarrow \boldsymbol{\Delta}/n$ // compute average update
 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{\Delta}$
Until $\|\boldsymbol{\Delta}\|_{2} < \epsilon$

- Simplest case: α = 1 and don't normalize, yields the fixed increment perceptron
- Each increment of outer loop is called an epoch

Learning in NN: Backpropagation

- Similar to the perceptron learning algorithm, we cycle through our examples
 - If the output of the network is correct, no changes are made
 - If there is an error, weights are adjusted to reduce the error
- The trick is to assess the blame for the error and divide it among the contributing weights

Example

Dimension d

 $z^{[1]} = W^{[1]} x^{(i)} + b^{[1]}$ $a^{[1]} = g(z^{[1]})$ $z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$ $a^{[2]} = g(z^{[2]})$ $z^{[3]} = W^{[3]}a^{[2]} + b^{[3]}$ $\hat{y}^{(i)} = a^{[3]} = g(z^{[3]})$

Parameter Initialization

- How about we set all W and b to 0?
- First layer

$$- z^{[1]} = W^{[1]} x + b^{[1]} = (0, ...0)$$

$$-a^{[1]} = g(z^{[1]}) = (\frac{1}{2}, ..., \frac{1}{2})$$

Second layer

$$- z^{[2]} = W^{[2]} x + b^{[2]} = (0,...0)$$
$$- a^{[2]} = g(z^{[2]}) = (\frac{1}{2}, ..., \frac{1}{2})$$

• Third layer

$$-z^{[3]} = W^{[3]}x + b^{[3]} = (0,...0)$$

$$-a^{[3]} = g(z^{[3]}) = (\frac{1}{2}, ..., \frac{1}{2})$$

• Initialize with random values instead!

Training

- Training data $x^{(1)}$, $y^{(1)}$, ... $x^{(N)}$, $y^{(N)}$
- One training example $x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})$, label y
- One forward pass through the network – Compute prediction \hat{y}
- Loss function for one example

 $-L(\hat{y}, y) = -[(1 - y)\log(1 - \hat{y}) + y\log\hat{y}]$

Cross-entropy loss

• Loss function for training data

$$-J(W,b) = \frac{1}{N} \sum_{i} L(\hat{y}^{(i)}, y^{(i)}) + \lambda R(W,b)$$

Reminder: Logistic Regression

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{N} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

• Cost of a single instance:

$$\cot(h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

• Can re-write objective function as $J(\boldsymbol{\theta}) = \sum_{i=1}^{N} \operatorname{cost} \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), y^{(i)} \right)$ Cross-entropy loss

Gradient Descent

- Converges for convex objective
- Could get stuck in local minimum for non-convex objectives

GD for Neural Networks

Initialization

- For all layers ℓ
 - Set $W^{[\ell]}$, $b^{[\ell]}$ at random
- Backpropagation
 - Fix learning rate α
 - For all layers ℓ (starting backwards)

•
$$W^{[\ell]} = W^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}^{(i)}, y^{(i)})}{\partial W^{[\ell]}}$$

•
$$b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}^{(i)}, y^{(i)})}{\partial b^{[\ell]}}$$

Backpropagation Intuition

$$\begin{split} \delta_{j}^{(l)} &= \text{``error'' of node } j \text{ in layer } l \\ \text{Formally, } \delta_{j}^{(l)} &= \frac{\partial}{\partial z_{j}^{(l)}} \text{cost } (x^{(i)}) \\ cost(x^{(i)}) &= y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \end{split}$$

Backpropagation Intuition

Backpropagation Intuition

Materials

- Stanford tutorial on training Multi-Layer Neural Networks
 - <u>http://ufldl.stanford.edu/tutorial/supervised/Mult</u> <u>iLayerNeuralNetworks/</u>
- Notes on backpropagation by Andrew Ng
 - <u>http://cs229.stanford.edu/notes/cs229-notes-backprop.pdf</u>
- Deep learning notes by Andrew Ng
 - <u>http://cs229.stanford.edu/notes/cs229-notes-</u> <u>deep_learning.pdf</u>

Review

- To train neural networks, need to decide first on architecture
 - Number of layers, number of hidden units, connections between neurons, activation functions
- Randomly initialize parameters
- For each training example, use forward propagation to compute prediction
- Use backpropagation to propagate the error from last layer back into the network

Acknowledgements

- Slides made using resources from:
 - Yann LeCun
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!