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Review

• Deep Learning has the ability to learn hierarchy of 
features
– Performs better with more training data

• Neural Networks can be shallow or deep
– Their power is given by non-linear activations
– XOR can be learned with 1 hidden layer

• Feed-Forward architectures
– Multi-Layer Perceptron (MLP) is fully connected
– Convolutional Neural Networks 
– Activation functions: sigmoid, ReLU, tanh
– Can be used with sigmoid in last layer for binary 

classification and softmax for multi-class classification
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Outline

• Convolutional Neural Networks

– Recap: convolution layer

– Max pooling

– Architectures

• Training with backpropagation

– Initialization

– Derivation of gradients

– Example
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Convolutional Nets

• Particular type of Feed-Forward Neural Nets 
– Invented by [LeCun 89]

• Applicable to data with natural grid topology
– Time series

– Images 

• Use convolutions on at least one layer
– Convolution is a linear operation

– Also use pooling operation

– Used for dimensionality reduction and learning 
hierarchical feature representations
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Convolutional Nets
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Convolutions
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Convolutions with stride
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Convolution Layer
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Convolution Layer
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Second, green filter

6 filters



Summary: Convolution Layer
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Convolution layer: Takeaways

• Convolution is a linear operation
– Reduces parameter space of Feed-Forward Neural 

Network considerably

– Capture locality of pixels in images

– Smaller filters need less parameters

– Multiple filters in each layer (computation can be 
done in parallel)

• Convolutions are followed by activation 
functions
– Typically ReLU
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Convolutional Nets
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Pooling layer
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Max Pooling
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Convolutional Nets
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LeNet 5
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History

17



VGGNet

18
138 million 
parameters



GoogLeNet
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Summary CNNs

• Convolutional Nets are Feed-Forward Networks with at 
least one convolution layer and optionally max pooling 
layers

• Convolutions enable dimensionality reduction
• Much fewer parameters relative to Feed-Forward 

Neural Networks
– Deeper networks with multiple small filters at each layer is 

a trend

• Fully connected layer at the end (fewer parameters)
• Learn hierarchical feature representations

– Data with natural grid topology (images, maps)

• Reached human-level performance in ImageNet in 
2014
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Outline

• Convolutional Neural Networks

– Recap: convolution layer

– Max pooling

– Architectures

• Training with backpropagation

– Initialization

– Derivation of gradients

– Example
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Feed-Forward Neural Network
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Forward Propagation
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Perceptron Learning
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Batch Perceptron
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Learning in NN: Backpropagation
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Example
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Parameter Initialization
• How about we set all W and b to 0?
• First layer

– 𝑧
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• Second layer

– 𝑧
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2
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• Third layer

– 𝑧
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3
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• Initialize with random values instead!
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Training

• Training data 𝑥(1) , y(1), … 𝑥(𝑁) , y(N)

• One training example 𝑥(𝑖) = 𝑥1
(𝑖)
, … 𝑥𝑑

(𝑖)
, label 𝑦

• One forward pass through the network
– Compute prediction ො𝑦

• Loss function for one example

– 𝐿 ො𝑦, 𝑦 = −[ 1 − 𝑦 log 1 − ො𝑦 + 𝑦 log ො𝑦]

• Loss function for training data

– 𝐽 𝑊, 𝑏 =
1

𝑁
σ𝑖 𝐿 ( ො𝑦

(𝑖), 𝑦(𝑖)) + 𝜆𝑅(𝑊, 𝑏)
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Cross-entropy loss



Reminder: Logistic Regression
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Cross-entropy loss
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Gradient Descent
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• Converges for convex objective
• Could get stuck in local minimum for non-convex objectives

𝜽 = (𝑊, 𝑏)



GD for Neural Networks

• Initialization

– For all layers ℓ

• Set 𝑊[ℓ], 𝑏[ℓ]at random

• Backpropagation

– Fix learning rate 𝛼

– For all layers ℓ (starting backwards)

• 𝑊[ℓ] = 𝑊[ℓ] − 𝛼σ𝑖=1
𝑁 𝜕𝐿( ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑊 ℓ

• 𝑏[ℓ] = 𝑏[ℓ] − 𝛼σ𝑖=1
𝑁 𝜕𝐿( ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑏 ℓ

32



Backpropagation Intuition
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Backpropagation Intuition
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Backpropagation Intuition
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Materials

• Stanford tutorial on training Multi-Layer 
Neural Networks
– http://ufldl.stanford.edu/tutorial/supervised/Mult

iLayerNeuralNetworks/

• Notes on backpropagation by Andrew Ng
– http://cs229.stanford.edu/notes/cs229-notes-

backprop.pdf

• Deep learning notes by Andrew Ng
– http://cs229.stanford.edu/notes/cs229-notes-

deep_learning.pdf
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Review

• To train neural networks, need to decide first 
on architecture
– Number of layers, number of hidden units, 

connections between neurons, activation 
functions

• Randomly initialize parameters

• For each training example, use forward 
propagation to compute prediction

• Use backpropagation to propagate the error 
from last layer back into the network
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