DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

November 1 2018

Review

- Deep Learning has the ability to learn hierarchy of features
 - Performs better with more training data
 - End-to-end learning
- Feed-Forward architectures
 - Neurons from one layer
 - At each layer linear operation followed by nonlinear activation function
 - Activation functions: sigmoid, ReLU, tanh (for regression)

Outline

- Feed-Forward architectures
 - Non-linear activations
 - Multi-Layer Perceptron
 - Multi-class classification (softmax unit)
 - Representing Boolean functions
- Convolutional Neural Networks
 - Convolution layer
 - Max pooling layer

Performance of Deep Learning

Deep Learning Applications

DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Image Classification Speech Recognition Language Translation Language Processing Sentiment Analysis Recommendation

MEDICINE & BIOLOGY

Cancer Cell Detection Diabetic Grading Drug Discovery

MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation

SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery

AUTONOMOUS MACHINES

Pedestrian Detection Lane Tracking Recognize Traffic Sign

5

Neural Network Architectures

Feed-Forward Networks

 Neurons from each layer connect to neurons from next layer Deep Feed Forward (DFF)

Deep Convolutional Network (DCN)

Convolutional Networks

- Includes convolution layer for feature reduction
- Learns hierarchical representations

Recurrent Networks

- Keep hidden state
- Have cycles in computational graph

Recurrent Neural Network (RNN)

Feed-Forward Neural Networks

Layered feed-forward network

- Neural networks are made up of nodes or units, connected by links
- Each link has an associated weight and activation level
- Each node has an input function (typically summing over weighted inputs), an activation function, and an output

Feed-Forward Neural Network

Vectorization

$$z_{1}^{[1]} = W_{1}^{[1]^{T}} x + b_{1}^{[1]} \text{ and } a_{1}^{[1]} = g(z_{1}^{[1]})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$z_{4}^{[1]} = W_{4}^{[1]^{T}} x + b_{4}^{[1]} \text{ and } a_{4}^{[1]} = g(z_{4}^{[1]})$$

 $a^{[1]} = g(z^{[1]})$

Vectorization

Output layer

$$z_1^{[2]} = W_1^{[2]^T} a^{[1]} + b_1^{[2]} \quad \text{and} \quad a_1^{[2]} = g(z_1^{[2]})$$

$$\underbrace{z_{1\times 1}^{[2]}}_{1\times 1} = \underbrace{W_{1\times 4}^{[2]}}_{1\times 4} \underbrace{a^{[1]}}_{4\times 1} + \underbrace{b^{[2]}}_{1\times 1} \quad \text{and} \quad \underbrace{a^{[2]}}_{1\times 1} = g(\underbrace{z^{[2]}}_{1\times 1})$$

Training Neural Networks

Pick a network architecture (connectivity pattern between nodes)

- # input units = # of features in dataset
- # output units = # classes

Reasonable default: 1 hidden layer

 or if >1 hidden layer, have same # hidden units in every layer (usually the more the better)

Training Neural Networks

- Input training dataset D
 - Number of features: d
 - Labels from K classes
- First layer has d+1 units (one per feature and bias)
- Output layer has K units
- Training procedure determines parameters that optimize loss function
 - Backpropagation
 - Learn optimal $W^{[i]}$, $b^{[i]}$ at layer i
- Testing done by forward propagation

Forward Propagation

- The input neurons first receive the data features of the object. After processing the data, they send their output to the first hidden layer.
- The hidden layer processes this output and sends the results to the next hidden layer.
- This continues until the data reaches the final output layer, where the output value determines the object's classification.
- This entire process is known as Forward Propagation, or Forward prop.

Logistic Unit: A simple NN

Sigmoid (logistic) activation function:

$$g(z) = \frac{1}{1 + e^{-z}}$$

No hidden layers

Activation Functions

Why Non-Linear Activations?

• Assume g is linear: g(z) = Uz- At layer 1: $z^{[1]} = W^{[1]T}x + b^{[1]}$

$$-a^{[1]} = g(z^{[1]}) = Uz^{[1]} = UW^{[1]T}x + Ub^{[1]}$$

• Layer 2:

$$-a^{[2]} = g(z^{[2]}) = Uz^{[2]} = UW^{[2]T}a^{[1]} + Ub^{[2]} = UW^{[2]T}UW^{[2]T}UW^{[1]T}x + UW^{[2]T}Ub^{[1]} + Ub^{[2]}$$

- Last layer
 - Output is linear in input!
 - Then NN will only learn linear functions

Multi-Layer Perceptron (MLP)

- Neurons from one layer are fully connected to neurons in next layer

Multiple Output Units: One-vs-Rest

Multiple Output Units: One-vs-Rest

- Given {(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)}
- Must convert labels to 1-of-K representation

- e.g.,
$$\mathbf{y}_i = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
 when motorcycle, $\mathbf{y}_i = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ when car, etc.

Neural Network Classification

Given:

 $\begin{aligned} &\{(\mathbf{x}_1, y_1), \ (\mathbf{x}_2, y_2), \ \dots, \ (\mathbf{x}_n, y_n)\} \\ &\mathbf{s} \in \mathbb{N^+}^L \text{ contains \# nodes at each layer} \\ &- s_0 = d \text{ (\# features)} \end{aligned}$

 $\frac{\text{Binary classification}}{y = 0 \text{ or } 1}$

1 output unit
$$(s_{L-1}=1)$$

Sigmoid

$$\begin{split} \underline{\text{Multi-class classification}}_{\mathbf{y} \in \mathbb{R}^{K}} \underbrace{\text{e.g.}}_{\substack{0 \\ 0 \\ 0 \end{bmatrix}}^{\text{figure}}, \underbrace{\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{\substack{0 \\ 0 \end{bmatrix}}^{\text{figure}}, \underbrace{\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}^{\text{figure}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}^{\text{figure}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}^{\text{figure}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}^{\text{figure}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix}$$

Softmax

Softmax classifier

- Predict the class with highest probability
- Generalization of sigmoid/logistic regression to multi-class

Multi-class classification

Representing Boolean Functions

Simple example: AND

 $x_1, x_2 \in \{0, 1\}$ $y = x_1 \text{ AND } x_2$

$$h_{\Theta}(\mathbf{x}) = g(-30 + 20x_1 + 20x_2)$$

x_1	<i>x</i> ₂	$\mathrm{h}_{\Theta}(\mathbf{x})$
0	0	g(-30) ≈ 0
0	1	g(-10) ≈ 0
1	0	g(-10) ≈ 0
1	1	<i>g</i> (10) ≈ 1

Representing Boolean Functions

Combining Representations

Which models are deep?

Outline

- Feed-Forward architectures
 - Non-linear activations
 - Multi-Layer Perceptron
 - Multi-class classification (softmax unit)
 - Representing Boolean functions
- Convolutional Neural Networks
 - Convolution layer
 - Max pooling layer

Convolutional Neural Networks

First strong results

Acoustic Modeling using Deep Belief Networks Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010 Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Imagenet classification with deep convolutional neural networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Illustration of Dahl et al. 2012 by Lane McIntosh, copyright CS231n 2017

Fast-forward to today: ConvNets are everywhere

Classification

Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

self-driving cars

Photo by Lane McIntosh. Copyright CS231n 2017.

- Object recognition
- Steering angle prediction
- Assist drivers in making decisions

No errors

A white teddy bear sitting in the grass

Minor errors

A man in a baseball uniform throwing a ball

A man riding a wave on top of a surfboard

A cat sitting on a suitcase on the floor

- Image captioning

- Particular type of Feed-Forward Neural Nets

 Invented by [LeCun 89]
- Applicable to data with natural grid topology

 Time series
 - Images
- Use convolutions on at least one layer
 - Convolution is a linear operation
 - Also use pooling operation
 - Used for dimensionality reduction and learning hierarchical feature representations

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Convolution Layer

32x32x3 image -> preserve spatial structure

• Depth of filter always depth of input

Convolution Layer

Convolution Layer

Convolutions

A closer look at spatial dimensions:

Convolutions with stride

7x7 input (spatially) assume 3x3 filter applied **with stride 2**

=> 3x3 output!

Convolutions with stride

7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

doesn't fit!

cannot apply 3x3 filter on 7x7 input with stride 3.

Ν

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:\

Padding

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:) (N - F) / stride + 1

Examples

Examples time:

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760

Summary: Convolutional Layer

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - \circ their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $\circ W_2 = (W_1 F + 2P)/S + 1$
 - $\circ~H_2=(H_1-F+2P)/S+1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Acknowledgements

- Slides made using resources from:
 - Yann LeCun
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!