DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

October 30 2018

Logistics

- Start working on projects!
- Final exam
 - Tuesday, Dec. 11, 2-5pm in ISEC 655
- Project presentations
 - Monday, Dec. 3rd
 - Exact time TBD (likely 3:00-5:30pm)
 - Class on Tuesday, Dec. 4 is cancelled
- Project report
 - Due Friday, Dec. 7

Review

- Review of traditional learning techniques
 - Linear classifiers (logistic regression, LDA)
 - Decision trees
 - Ensembles (Random Forests, AdaBoost)
 - SVM
 - Naïve Bayes
- Evaluation in machine learning
 - Confusion matrix
 - Metrics: precision, recall, F1, AUC
 - ROC curves

Comparing Supervised Learning

Comparing Supervised Learning Algorithms : Table

Algorithm	Problem Type	Results interpretable by you?	Easy to explain algorithm to others?	Average predictive accuracy	Training speed	Prediction speed
KNN	Fither	Vos	Vos	Lower	Fast	Depends on
		163	163	Lower	1 451	
Linear regression	Regression	Yes	Yes	Lower	Fast	Fast
Logistic regression	Classification	Somewhat	Somewhat	Lower	Fast	Fast
Naive Bayes	Classification	Somewhat	Somewhat	Lower	Fast (excluding feature extraction)	Fast
Decision trees	Either	Somewhat	Somewhat	Lower	Fast	Fast
Random Forests	Either	A little	No	Higher	Slow	Moderate
AdaBoost	Either	A little	No	Higher	Slow	Fast
Neural networks	Either	No	No	Higher	Slow	Fast

Roadmap to End-of-Semester

- Deep Learning
 - Motivation
 - Feed-Forward Neural Networks
 - Training by backpropagation
 - Convolutional and Recurrent Neural Networks
- Unsupervised learning
 - Principal Component Analysis (PCA)
 - Feature representation (Autoencoders)
 - Clustering (k-means, Hierarchical Clustering)
- Adversarial learning

Today's Outline

- Motivation for Deep Learning
- Deep Learning as representation learning
- Categories of neural networks
- Feed-Forward architectures
 - Activation functions
 - Vectorization
- Representing Boolean functions
 - XOR can be learned with 1 hidden layer

Deep Learning

The traditional model of pattern recognition (since the late 50's)

Fixed/engineered features (or fixed kernel) + trainable classifier

End-to-end learning / Feature learning / Deep learning

Before 2013

Fe

ature

Extracto

Wi

The first learning machine: the Perceptron

The Perceptron was a linear classifier on

The vast majority of practical applications

of ML today use glorified linear classifiers

top of a simple feature extractor

or glorified template matching.

Designing a feature extractor requires

Built at Cornell in 1960

Trainable Feature Hierarchy

Hierarchy of representations with increasing level of abstraction

Each stage is a kind of trainable feature transform

Image recognition

▶ Pixel \rightarrow edge \rightarrow texton \rightarrow motif \rightarrow part \rightarrow object

Text

▶ Character \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story

🗾 Speech

Sample \rightarrow spectral band \rightarrow sound \rightarrow ... \rightarrow phone \rightarrow phoneme \rightarrow

Learning Representations

Learning Representations

Deep Learning addresses the problem of learning hierarchical representations with a single algorithm

End-to-end learning

A hierarchy of trainable feature transforms

- Each module transforms its input representation into a higher-level one.
- High-level features are more global and more invariant
- Low-level features are shared among categories

How can we make all the modules trainable and get them to learn appropriate representations?

Deep Learning vs Traditional Learning

The Visual Cortex is Hierarchical

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT

Lots of intermediate representations

Neural Function

- Brain function (thought) occurs as the result of the firing of **neurons**
- Neurons connect to each other through synapses, which propagate action potential (electrical impulses) by releasing neurotransmitters
 - Synapses can be excitatory (potential-increasing) or inhibitory (potential-decreasing), and have varying activation thresholds
 - Learning occurs as a result of the synapses' plasticicity: They exhibit long-term changes in connection strength
- There are about 10¹¹ neurons and about 10¹⁴ synapses in the human brain!

Biology of a Neuron

Analogy to Human Brain

Human Brain

Biological Neuron

Comparison of computing power

INFORMATION CIRCA 2012	Computer	Human Brain
Computation Units	10-core Xeon: 10 ⁹ Gates	10 ¹¹ Neurons
Storage Units	10 ⁹ bits RAM, 10 ¹² bits disk	10 ¹¹ neurons, 10 ¹⁴ synapses
Cycle time	10 ⁻⁹ sec	10 ⁻³ sec
Bandwidth	10 ⁹ bits/sec	10 ¹⁴ bits/sec

- Computers are way faster than neurons...
- But there are a lot more neurons than we can reasonably model in modern digital computers, and they all fire in parallel
- Neural networks are designed to be massively parallel
- The brain is effectively a billion times faster

Neural Networks

- Origins: Algorithms that try to mimic the brain.
- Very widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications
- Artificial neural networks are not nearly as complex or intricate as the actual brain structure

Example

- Provide as input only training data: input and label
- Neural Networks automatically learn intermediate features!

Neural Networks

Layered feed-forward network

- Neural networks are made up of nodes or units, connected by links
- Each link has an associated weight and activation level
- Each node has an input function (typically summing over weighted inputs), an activation function, and an output

Logistic Unit

Sigmoid (logistic) activation function: g

$$g(z) = \frac{1}{1 + e^{-z}}$$

Neural Network

Activation Functions

Neural Network Architectures

Feed-Forward Networks

 Neurons from each layer connect to neurons from next layer Deep Feed Forward (DFF)

Deep Convolutional Network (DCN)

Convolutional Networks

- Includes convolution layer for feature reduction
- Learns hierarchical representations

Recurrent Networks

- Keep hidden state
- Have cycles in computational graph

Feed-Forward Process

- Input layer units are set by some exterior function (think of these as sensors), which causes their output links to be activated at the specified level
- Working forward through the network, the input function of each unit is applied to compute the input value
 - Usually this is just the weighted sum of the activation on the links feeding into this node
- The activation function transforms this input function into a final value
 - Typically this is a nonlinear function, often a sigmoid function corresponding to the "threshold" of that node

Feed-Forward Networks

L denotes the number of layers

- $\mathbf{s} \in \mathbb{N^+}^L$ contains the numbers of nodes at each layer
 - Not counting bias units
 - Typically, $s_0 = d$ (# input features) and $s_{L-1} = K$ (# classes)

Feed-Forward NN

- Number of layers
- Architecture (how layers are connected)
- Number of hidden units per layer
- Number of units in output layer
- Activation functions
- Other
 - Initialization
 - Regularization

Feed-Forward Neural Network

Vectorization

$$z_{1}^{[1]} = W_{1}^{[1]^{T}} x + b_{1}^{[1]} \text{ and } a_{1}^{[1]} = g(z_{1}^{[1]})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$z_{4}^{[1]} = W_{4}^{[1]^{T}} x + b_{4}^{[1]} \text{ and } a_{4}^{[1]} = g(z_{4}^{[1]})$$

Hidden Units

- Layer 1
 - First hidden unit:
 - Linear: $z_1^{[1]} = W_1^{[1]T}x + b_1^{[1]}$
 - Non-linear: $a_1^{[1]} = g(z_1^{[1]})$
 - ..
 - Fourth hidden unit:
 - Linear: $z_4^{[1]} = W_4^{[1]T}x + b_4^{[1]}$
 - Non-linear: $a_4^{[1]} = g(z_4^{[1]})$
- Terminology
 - $-a_i^{[j]}$ Activation of unit i in layer j
 - g Activation function
 - $-W_j$ Weight vector controlling mapping from layer j-1 to j
 - b_j Bias vector from layer j-1 to j

Vectorization

Output layer

$$z_1^{[2]} = W_1^{[2]^T} a^{[1]} + b_1^{[2]} \quad \text{and} \quad a_1^{[2]} = g(z_1^{[2]})$$

$$\underbrace{z_{1\times 1}^{[2]}}_{1\times 1} = \underbrace{W_{1\times 4}^{[2]}}_{1\times 4} \underbrace{a^{[1]}}_{4\times 1} + \underbrace{b^{[2]}}_{1\times 1} \quad \text{and} \quad \underbrace{a^{[2]}}_{1\times 1} = g(\underbrace{z^{[2]}}_{1\times 1})$$

Performance of Deep Learning

Deep Learning Applications

DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Image Classification Speech Recognition Language Translation Language Processing Sentiment Analysis Recommendation

Cancer Cell Detection Diabetic Grading Drug Discovery

MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation

SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery

AUTONOMOUS MACHINES

Pedestrian Detection Lane Tracking Recognize Traffic Sign

Acknowledgements

- Slides made using resources from:
 - Yann LeCun
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!