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Logistics

• Project proposal is due on Oct 24 (1 page on 
Gradescope)
– Project Title

– Problem Description 

– Dataset

– Approach

• Final project 
– Presentation: Monday, Dec 3 

– Report: Friday, Dec 7

• Final exam
– Tuesday, Dec 11
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Review

• Maximum margin classifier
– Classifier of maximum margin

– For linearly separable data

– An “optimized” perceptron

• Support vector classifier
– Allows some slack and sets a total error budget 

(hyper-parameter)

– Final classifier on a point is a linear combination of 
inner product of point with support vectors

– Efficient to evaluate
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Outline

• Support vector classifier

– Review

– Hinge loss

• SVM 

– Non-linear decision boundaries

– Kernels 

– Polynomial and Radial SVM

• Density estimators
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Linear separability
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Separating hyperplane
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𝑦(𝑖)(𝜃0 + 𝜃1𝑥1
(𝑖)
+⋯𝜃𝑑𝑥𝑑

(𝑖)
) > 0

For all training 

data 𝑥(𝑖), 𝑦(𝑖),
𝑖 ∈ {1,… , 𝑛}

h(x, 𝜃) = sign(𝜃𝑇𝑥)



Maximum Margin

Class 1
Class -1

f x

𝜃

yest

f(x, 𝜃) = sign(𝜃𝑇𝑥)

The maximum margin 
linear classifier is the 
linear classifier with 
the maximum margin!
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Classifier margin
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• Support vectors are “closest” to hyperplane
• At least 2 support vectors (1 positive, 1 negative)



Finding the maximum margin classifier
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• Training data 𝑥(1), … , 𝑥 𝑛 with 𝑥(𝑖) = 𝑥1
(𝑖)
, … , 𝑥𝑑

(𝑖) T

• Labels are from 2 classes: 𝑦𝑖 ∈ {−1,1}

max M

𝑦(𝑖) 𝜃0 + 𝜃1𝑥1
(𝑖)
+⋯𝜃𝑑𝑥𝑑

(𝑖)
≥ 𝑀 ∀𝑖

𝜃
2
= 1

Normalization constraint
Each point is on the 
right side of hyper-

plane at distance ≥ 𝑀



Support vector classifier

• Allow for small number of mistakes on training 
data

• Obtain a more robust model

max M

𝑦(𝑖) 𝜃0 + 𝜃1𝑥1
(𝑖)
+⋯𝜃𝑑𝑥𝑑

(𝑖)
≥ 𝑀 1 − 𝜖𝑖 ∀𝑖

𝜃
2
= 1

𝜖𝑖 ≥ 0,σ𝑖 𝜖𝑖 = 𝐶

10
Error Budget (Hyper-parameter)

Slack



Equivalent formulation

• Min 𝜃
2
+ 𝐶σ𝑖 𝜖𝑖

• 𝑦(𝑖) 𝜃0 + 𝜃1𝑥1
(𝑖)
+⋯𝜃𝑑𝑥𝑑

(𝑖)
≥ 1 − 𝜖𝑖 ∀𝑖

• 𝜖𝑖 ≥ 0

• When i is correctly classified, 𝑦(𝑖)ℎ 𝑥(𝑖) ≥ 1

• When i is not correctly classified

1 − 𝑦(𝑖)ℎ 𝑥(𝑖) ≤ 𝜖𝑖

• max 0,1 − 𝑦(𝑖)ℎ 𝑥(𝑖) ≤ 𝜖𝑖 11

h 𝑥(𝑖) = 𝜃0 + 𝜃1𝑥1
(𝑖)
+⋯𝜃𝑑𝑥𝑑

(𝑖)



Hinge Loss

• 𝐽 𝜃 = σ𝑖=1
𝑛 max 0,1 − 𝑦(𝑖)ℎ 𝑥(𝑖) + 𝜆σ𝑗=1

𝑑 𝜃𝑗
2
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Hinge loss

h 𝑥(𝑖) = 𝜃0 + 𝜃1𝑥1
(𝑖)
+⋯𝜃𝑑𝑥𝑑

(𝑖)

Total Error Budget Regularization Term

𝐽 𝜃 = 𝐶

𝑖=0

𝑛

max 0,1 − 𝑦(𝑖)ℎ 𝑥(𝑖) +
𝑗=1

𝑑

𝜃𝑗
2

𝐶 =
1

λ



Error Budget and Margin
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Larger C
Low variance

Smaller C
Over-fitting

Find best hyper-parameter C by cross-validation



Non-linear decision
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More examples
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Kernels

• Support vector classifier
– h 𝑧 = 𝜃0 + σ𝑖∈𝑆𝛼𝑖 < 𝑧, 𝑥(𝑖) >=

= 𝜃0 + σ𝑖∈𝑆𝛼𝑖 σ𝑗=1 𝑧𝑗𝑥𝑗
(𝑖)

– S is set of support vectors 

– Replace with h 𝑧 = 𝜃0 +σ𝑖∈𝑆𝛼𝑖𝐾(𝑧, 𝑥
(𝑖))

• What is a kernel?
– Function that characterizes similarity between 2 

observations

– 𝐾 𝑎, 𝑏 =< 𝑎, 𝑏 > = σ𝑗 𝑎𝑗𝑏𝑗 linear kernel!

– The “closest” the points, the larger the kernel 

• Intuition
– The closest support vectors to the point play larger role in 

classification
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The Kernel Trick
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• Enlarge feature space
• Shape of the kernel changes the decision boundary



Kernels

• Linear kernels

– 𝐾 𝑎, 𝑏 =< 𝑎, 𝑏 > = σ𝑖 𝑎𝑖𝑏𝑖

• Polynomial kernel of degree m

– 𝐾 𝑎, 𝑏 = 1 + σ𝑖=0
𝑑 𝑎𝑖𝑏𝑖

𝑚

• Radial Basis Function (RBF) kernel (or 
Gaussian)

– 𝐾 𝑎, 𝑏 = exp −𝛾σ𝑖=0
𝑑 (𝑎𝑖−𝑏𝑖)

2

• Support vector machine classifier

– h 𝑧 = 𝜃0 + σ𝑖∈𝑆 𝛼𝑖𝐾(𝑧, 𝑥
(𝑖))
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General SVM classifier

• S = set of support vectors

• SVM with polynomial kernel

– ℎ 𝑧 = 𝜃0 +σ𝑖∈𝑆 𝛼𝑖 1 + σ𝑗=0
𝑑 𝑧𝑗𝑥𝑗

(𝑖) 𝑚

– Hyper-parameter m (degree of polynomial)

• SVM with radial kernel

– ℎ 𝑧 = 𝜃0 +σ𝑖∈𝑆 𝛼𝑖exp −𝛾σ𝑗=0
𝑑 (𝑧𝑗−𝑥𝑗

(𝑖)
)2

– Hyper-parameter 𝛾 (increase for non-linear data)

– As testing point z is closer to support vector, kernel is 
close to 1

– Local behavior: points far away have negligible impact 
on prediction
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Kernel Example
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Advantages of Kernels

• Generate non-linear features

• More flexibility in decision boundary

• Generate a family of SVM classifiers

• Testing is computationally efficient
– Cost depends only on support vectors  and kernel 

operation

• Disadvantages
– Kernels need to be tuned (additional hyper-

parameters)
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When to use different kernels?

• If data is (close to) linearly separable, use 
linear SVM

• Radial or polynomial kernels preferred for 
non-linear data

• Training radial or polynomial kernels takes 
longer than linear SVM

• Other kernels

– Sigmoid

– Hyperbolic Tangent
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Comparing SVM with other classifiers

• SVM is resilient to outliers
– Similar to Logistic Regression

– LDA or kNN are not 

• SVM can be trained with Gradient Descent
– Hinge loss cost function

• Supports regularization
– Can add penalty term (ridge or Lasso) to cost 

function

• Linear SVM is most similar to Logistic 
Regression
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Connection to Logistic Regression

• 𝐽 𝜃 = σ𝑖=0
𝑛 max 0,1 − 𝑦(𝑖)ℎ 𝑥(𝑖) + 𝜆σ𝑗=1

𝑑 𝜃𝑗
2
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Hinge loss

𝑦(𝑖) 𝜃0 + 𝜃1𝑥1
(𝑖)
+⋯𝜃𝑑𝑥𝑑

(𝑖)

h 𝑥(𝑖) = 𝜃0 + 𝜃1𝑥1
(𝑖)
+⋯𝜃𝑑𝑥𝑑

(𝑖)



SVM for Multiple Classes
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Lab – Linear SVM
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Lab – Linear SVM
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Lab – Linear SVM
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Lab – Radial SVM
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Lab – Radial SVM
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Lab – Multiple Classes
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Lab – Multiple Classes
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Review SVM
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Outline

• Support vector classifier

– Review

– Hinge loss

• SVM 

– Non-linear decision boundaries

– Kernels 

– Polynomial and Radial SVM

• Density estimators
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Essential probability concepts
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Prior and Joint Probabilities
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The Joint Distribution
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Computing Prior Probabilities
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Learning Joint Distributions
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Example – Learning Joint Probability 
Distribution
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Density Estimation
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Density Estimation
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Evaluating Density Estimators
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Evaluating Density Estimators
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Example
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Example
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Log Probabilities
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Example
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Evaluation on Test Set
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Overfitting
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Curse of Dimensionality
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Pros and Cons of Density Estimators

• Pros

– Density Estimators can learn distribution of 
training data

– Can compute probability for a record

– Can do inference (predict likelihood of record)

• Cons

– Can overfit to the training data and not generalize 
to test data

– Curse of dimensionality
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Naïve Bayes classifier fixes these cons!
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