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Logistics
• HW2 is due on Friday, Oct. 19 at midnight
• Project proposal is due on Oct 22 (1 page on Gradescope)

– Project Title
– Problem Description 

• What is the machine learning problem you are trying to solve?

– Dataset
• Link to data, brief description, number of records, feature 

dimensionality
• At least 10,000 records

– Approach
• Data exploration
• Normalization if any
• Feature selection if any
• Machine learning models (several) you will try for your problem
• Methodology for splitting into training and testing, cross validation
• Language and packages you plan to use
• Metrics, how you will evaluate your models
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Review

• Ensemble learning are powerful learning 
methods

• Bagging uses bootstrapping (with replacement), 
trains T models, and averages their prediction
– Random forests vary training data and feature set at 

each split

• Boosting is an ensemble of weak learners that 
emphasizes mis-predicted examples
– AdaBoost has great theoretical and experimental 

performance 

– Can be used with linear models or simple decision 
trees
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Outline

• Quick review on ensemble learning

• SVM

– Linearly separable data

• Separating hyperplanes

• Maximum margin classifier

– Non-separable data

• Support vector classifier

• Non-linear decision boundaries

– Kernels and Radial SVM
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Ensemble Learning
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• Bagging
• Boosting



Combining Classifiers: Averaging
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Combining Classifiers: Weighted 
Averaging
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Bagging

8Majority Votes

Bootstrap 
samples

RF: subset of 
features at 
each split



Evaluating Bagging
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• Sample each training point with probability 1/n
• Out-Of-Bag (OOB) observation: point not in sample

• For each point: prob (1-1/n)n 

• About 1/3 of data
• OOB error: error on OOB samples

• OOB average error 
• Compute across all models in Ensemble
• Use instead of Cross-Validation error



AdaBoost
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Adaptive Boosting 
Freund and Schapire 1997



AdaBoost
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{(𝑥(𝑖), 𝑦(𝑖))}, i = 1…n

exp(−𝛽𝑡𝑦
𝑖 ℎ𝑡(𝑥

𝑖 )), i =



Base Learner Requirements
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Outline

• Quick review on ensemble learning

• SVM

– Linearly separable data

• Separating hyperplanes

• Maximum margin classifier

– Non-separable data

• Support vector classifier

• Non-linear decision boundaries

– Kernels and Radial SVM
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Hyperplane
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• Line (2-dimensions): 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 = 0
• Hyperplane (d-dimensions): 𝜃0 + 𝜃1𝑥1 +⋯𝜃𝑑𝑥𝑑 = 0



Notation

• Training data 𝑥(1), … , 𝑥(𝑛) with 𝑥(𝑖) =

𝑥1
(𝑖)
, … , 𝑥𝑑

(𝑖) T

• Labels are from 2 classes: y(i) ∈ {−1,1}

• Goal: 

– Build a model to classify training data

– Test it on new data 𝑥1
′ , … , 𝑥𝑛

′ to predict labels 
𝑦1
′ , … , 𝑦𝑛

′
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Linear separability
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Separating hyperplane
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𝜃0 + 𝜃1𝑥1
(𝑖)

+⋯𝜃𝑑𝑥𝑑
𝑖
> 0 if 𝑦(𝑖) = 1

𝜃0 + 𝜃1𝑥1
(𝑖)

+⋯𝜃𝑑𝑥𝑑
𝑖
< 0 if 𝑦(𝑖) = −1

Perfect separation between the 2 classes

For all training 

data 𝑥 𝑖 , 𝑦
(𝑖)

𝑖 ∈ {1,… , 𝑛}



Separating hyperplane
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𝑦(𝑖)(𝜃0 + 𝜃1𝑥1
(𝑖)

+⋯𝜃𝑑𝑥𝑑
(𝑖)
) > 0

For all training 

data 𝑥(𝑖), 𝑦(𝑖),
𝑖 ∈ {1,… , 𝑛}



From separating hyperplane to 
classifier
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• Training data 𝑥(1), … , 𝑥 𝑛 with 𝑥(𝑖) = 𝑥1
(𝑖)
, … , 𝑥𝑑

(𝑖) T

• Labels are from 2 classes: 𝑦(𝑖) ∈ {−1,1}

• Let 𝜃1, … , 𝜃𝑑 such that:

• Classifier 

𝑓 𝑧 = sign 𝜃0 + 𝜃1𝑧1 +⋯𝜃𝑑𝑧𝑑 = sign(𝜃𝑇z)

• Test on new point 𝑥′
– If 𝑓 𝑥′ > 0 predict y’= 1

– Otherwise predict y’= −1

𝑦(𝑖)(𝜃0 + 𝜃1𝑥1
(𝑖)

+⋯𝜃𝑑𝑥𝑑
(𝑖)
) > 0



Separating hyperplane

• If a separating hyperplane exists, there are 
infinitely many

• Which one should we choose?
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Intuition
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Classifier Margin

Define the margin of 
a linear classifier as 
the width that the 
boundary could be 
increased by before 
hitting a datapoint.

Class 1
Class -1

f x

𝜃

yest

f(x, 𝜃) = sign(𝜃𝑇𝑥)
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Maximum Margin

Class 1
Class -1

f x

𝜃

yest

f(x, 𝜃) = sign(𝜃𝑇𝑥)

The maximum margin 
linear classifier is the 
linear classifier with 
the maximum margin!
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Classifier margin
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• Support vectors are “closest” to hyperplane
• If support vectors change, classifier changes



Finding the maximum margin classifier
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• Training data 𝑥(1), … , 𝑥 𝑛 with 𝑥(𝑖) = 𝑥1
(𝑖)
, … , 𝑥𝑑

(𝑖) T

• Labels are from 2 classes: 𝑦𝑖 ∈ {−1,1}

max M

𝑦(𝑖) 𝜃0 + 𝜃1𝑥1
(𝑖)

+⋯𝜃𝑑𝑥𝑑
(𝑖)

≥ 𝑀 ∀𝑖

𝜃
2
= 1

Normalization constraint
Each point is on the 
right side of hyper-

plane at distance ≥ 𝑀



Equivalent formulation

• Min 𝜃
2

• 𝑦(𝑖) 𝜃0 + 𝜃1𝑥1
(𝑖)

+⋯𝜃𝑑𝑥𝑑
(𝑖)

≥ 1 ∀𝑖

• Can be solved with quadratic optimization 
techniques

• It’s easier to optimize the dual problem

• Maximum margin classifier – given by solution 
𝜃 to this optimization problem
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Outline

• Quick review on ensemble learning

• SVM

– Linearly separable data

• Separating hyperplanes

• Maximum margin classifier

– Non-separable data

• Support vector classifier

• Non-linear decision boundaries

– Kernels and Radial SVM
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Linear separability
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Non-separable case
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Optimization problem has no solution!



Maximum margin is not always the 
best!
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• Overfits to training data
• Sensitive to small modification (high variance)



Support vector classifier

• Allow for small number of mistakes on training 
data

• Obtain a more robust model

max M

𝑦(𝑖) 𝜃0 + 𝜃1𝑥1
(𝑖)

+⋯𝜃𝑑𝑥𝑑
(𝑖)

≥ 𝑀 1 − 𝜖𝑖 ∀𝑖

𝜃
2
= 1

𝜖𝑖 ≥ 0,σ𝑖 𝜖𝑖 = 𝐶

32
Error Budget (Hyper-parameter)

Slack



max M

𝑦(𝑖) 𝜃0 + 𝜃1𝑥1
(𝑖)

+⋯𝜃𝑑𝑥𝑑
(𝑖)

≥ 𝑀(1 − 𝜖𝑖 ) ∀𝑖

𝜃
2
= 1

𝜖𝑖 ≥ 0,σ𝑖 𝜖𝑖 = 𝐶
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Error 
Budget

Slack

𝜖𝑖 = 0
Correct side 

of margin

0 < 𝜖𝑖 < 1
Violates margin

Correct label

𝜖𝑖 > 1
Incorrect label
At most C data 

points



Error Budget and Margin
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Larger C
Low variance

Smaller C
Over-fitting

Find best hyper-parameter C by cross-validation



Equivalent formulation

• Min 𝜃
2
+ 𝐶 σ𝑖 𝜖𝑖

• 𝑦(𝑖) 𝜃0 + 𝜃1𝑥1
(𝑖)

+⋯𝜃𝑑𝑥𝑑
(𝑖)

≥ 1 − 𝜖𝑖 ∀𝑖

• 𝜖𝑖 ≥ 0

• Inner product of 2 vectors 𝑎 = (𝑎1, … , 𝑎𝑑) and 
𝑏 = (𝑏1, … , 𝑏𝑑) is < 𝑎, 𝑏 > = σ𝑖 𝑎𝑖𝑏𝑖

• Solution is Support Vector Classifier 

– 𝑓 𝑧 = 𝜃0 + σ𝑖 𝛼𝑖 < 𝑧, 𝑥(𝑖) >
– Where 𝛼𝑖 ≠ 0 only for support vectors (for all other 

training points 𝛼𝑖 = 0)
– Linear SVM
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Properties

• Maximum margin classifier

– Classifier of maximum margin

– For linearly separable data

• Support vector classifier

– Allows some slack and sets a total error budget 
(hyper-parameter)

– Final classifier on a point is a linear combination of 
inner product of point with support vectors

– Efficient to evaluate
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Objective for Logistic Regression
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Cross-entropy loss



Regularized Logistic Regression
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L2 regularization



Connection to Logistic Regression

• 𝐽 𝜃 = σ𝑖=0
𝑛 max 0,1 − 𝑦(𝑖)𝑓 𝑥(𝑖) + 𝜆σ𝑗=1

𝑑 𝜃𝑗
2
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Hinge loss

𝑦(𝑖) 𝜃0 + 𝜃1𝑥1
(𝑖)

+⋯𝜃𝑑𝑥𝑑
(𝑖)

𝑓 𝑥(𝑖) = 𝜃0 + 𝜃1𝑥1
(𝑖)

+⋯𝜃𝑑𝑥𝑑
(𝑖)

• 𝐽 𝜃 = 𝐶 σ𝑖=0
𝑛 max 0,1 − 𝑦(𝑖)𝑓 𝑥(𝑖) +σ𝑗=1

𝑑 𝜃𝑗
2

𝐶 = regularization cost



Resilience to outliers

• LDA is very sensitive to outliers

– Estimates mean and co-variance using all training 
data

• SVM is resilient to outliers

– Decision hyper-plane mainly depends on support 
vectors

• Logistic regression is also resilient to points far 
from decision boundary

– Cross-entropy uses logs in the loss function
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