DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

October 11 2018

Review

- Decision trees are interpretable, non-linear models
 - Greedy algorithm to train Decision Trees (ID3)
 - Works on categorical and numerical data
 - Node splitting done by feature with max
 Information Gain
- Ensemble learning
 - Combines multiple ML models for better accuracy
 - Reduces variance of individual model

Outline

- Ensemble learning
 - How to combine classifiers
 - Variance reduction
 - Methods to create diversity
- Bagging method
 - Random Forest model
 - Variable importance
- Boosting method
 - AdaBoost

Ensemble Learning

Consider a set of classifiers h_1 , ..., h_L

Idea: construct a classifier $H(\mathbf{x})$ that combines the individual decisions of $h_1, ..., h_L$

- e.g., could have the member classifiers vote, or
- e.g., could use different members for different regions of the instance space

Successful ensembles require diversity

- Classifiers should make different mistakes
- Can have different types of base learners

Combining Classifiers: Averaging

Final hypothesis is a simple vote of the members

Combining Classifiers: Weighted Averaging

 Coefficients of individual members are trained using a validation set

Reduce Variance

• Averaging reduces variance:

$$Var(\overline{X}) = \frac{Var(X)}{N}$$

(when predictions are **independent**)

Average models to reduce model variance

One problem:

only one training set

where do multiple models come from?

How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests)
- Boosting (e.g., AdaBoost)

Bagging

- Leo Breiman (1994)
- Take repeated **bootstrap samples** from training set *D*
- Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.
- Bagging:
 - Create k bootstrap samples $D_1 \dots D_k$.
 - Train distinct classifier on each D_i .
 - Classify new instance by majority vote / average.

General Idea

Majority Votes

Example of Bagging

Sampling with replacement

Data ID										
Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

Training Data

- Sample each training point with probability 1/n
- Out-Of-Bag (OOB) observation: point not in sample
 - For each point: prob (1-1/n)ⁿ
 - About 1/3 of data
 - OOB error: error on OOB samples
- OOB average error
 - Compute across all models in Ensemble
 - Use instead of Cross-Validation error

Bagging

- Can be applied to multiple classification models
- Very successful for decision trees
 - Decision trees have high variance
 - Don't prune the individual trees, but grow trees to full extent
 - Precision accuracy of decision trees improved substantially
- OOB average error used instead of Cross Validation

Example Distribution

Decision Tree Decision Boundary

100 Bagged Trees

shades of blue/red indicate strength of vote for particular classification

Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Introduce two sources of randomness: "Bagging" and "Random input vectors"
 - Bagging method: each tree is grown using a bootstrap sample of training data
 - Random vector method: At each node, best split is chosen from a random sample of *m* attributes instead of all attributes

Random Forests

- Construct decision trees on bootstrap replicas
 - Restrict the node decisions to a small subset of features picked randomly for each node
- Do not prune the trees
 - Estimate tree performance on out-of-bootstrap data
- Average the output of all trees (or choose mode decision)

Trees are de-correlated by choice of random subset of features

Random Forest Algorithm

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample **S** of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Classification: Let $\hat{C}_b(x)$ be the class prediction of the *b*th random-forest tree. Then $\hat{C}^B_{\rm rf}(x) = majority \ vote \ \{\hat{C}_b(x)\}^B_1$.

If m=p, this is equivalent to Bagging

Effect of Number of Predictors

- p = total number of predictors; m = predictors chosen in each split
- Random Forests uses $m = \sqrt{p}$

Variable Importance

- Ensemble of trees looses somewhat interpretability of decision trees
- Which variables contribute mostly to prediction?
- Random Forest computes a Variable
 Importance metric

Gini index

- Take a node of decision tree
- Let p_i be the fraction of examples from class i
- Measures the "purity" of the node
 - If node has most examples from one class, Gini index is low
- What is the probability that a random example is mis-classified at that node?

 $-\sum_{i=1}^k p_i(1-p_i)$

Variable importance of a feature measures decrease in Gini

Variable Importance Plots

FIGURE 8.9. A variable importance plot for the Heart data. Variable importance is computed using the mean decrease in Gini index, and expressed relative to the maximum.

Lab

```
>
> library(randomForest)
> rf.carseats=randomForest(High~.-Sales,Carseats,subset=train,importance=TRUE)
 > rf.carseats
 Call:
 randomForest(formula = High ~ . - Sales, data = Carseats, importance = TRUE, subset = train)
              Type of random forest: classification
                    Number of trees: 500
 No. of variables tried at each split: 3
        OOB estimate of error rate: 18.5%
 Confusion matrix:
     No Yes class.error
 No 104 14 0.1186441
 Yes 23 59 0.2804878
>
> rf.pred=predict(rf.carseats,Carseats.test,type="class")
> table(rf.pred,High.test)
        High.test
rf.pred No Yes
    No 105 25
    Yes 13 57
> mean(rf.pred==High.test)
[1] 0.81
```

Lab

	-
<pre>> importance(</pre>	rf.carseats,type=2)
М	eanDecreaseGini
CompPrice	10.444114
Income	9.204883
Advertising	12.367002
Population	7.722053
Price	23.437998
ShelveLoc	15.053694
Age	10.135102
Education	4.879102
Urban	1.585268
US	1.369725

Lab

> varImpPlot(rf.carseats) >

Price	••••••	Price	••••••
ShelveLoc	••••••	ShelveLoc	••••••
Advertising	••••••	Advertising	••••••
CompPrice	0	CompPrice	······0·····
Age	00	Age	••••••
Income	⊖	Income	••••••
US	0	Population	
Urban	0	Education	0
Education	••	Urban	••••
Population	0	US	••• •••
	0 10 20 30)	0 5 15
Me	anDecreaseAccura	icy I	MeanDecreaseGini

How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests)
- Boosting (e.g., AdaBoost)

- A meta-learning algorithm with great theoretical and empirical performance
- Turns a base learner (i.e., a "weak hypothesis") into a high performance classifier
- Creates an ensemble of weak hypotheses by repeatedly emphasizing mispredicted instances

Adaptive Boosting Freund and Schapire 1997

1: Initialize a vector of n uniform weights \mathbf{w}_1 2: for $t = 1, \ldots, T$

- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t

5: Choose
$$\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

6: Update all instance weights:

 $w_{t+1,i} = w_{t,i} \exp(-\beta_t y^{(i)} h_t(x^{(i)}))$

7: Normalize \mathbf{w}_{t+1} to be a distribution

8: end for

9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

Size of point represents the instance's weight

1: Initialize a vector of n uniform weights \mathbf{w}_1 2: for t = 1, ..., T3: Train model h_t on X, y with weights \mathbf{w}_t 4: Compute the weighted training error of h_t 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t}\right)$ 6: Update all instance weights: $w_{t+1,i} = w_{t,i} \exp(-\beta_t y^{(i)} h_t(x^{(i)}))$ 7: Normalize \mathbf{w}_{t+1} to be a distribution 8: end for 9: Return the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

1: Initialize a vector of n uniform weights \mathbf{w}_1 t = 12: for t = 1, ..., TTrain model h_t on X, y with weights \mathbf{w}_t 3: Compute the weighted training error of h_t 4: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$ 5:Update all instance weights: 6: $w_{t+1,i} = w_{t,i} \exp(-\beta_t y^{(i)} h_t(x^{(i)}))$ 7: Normalize \mathbf{w}_{t+1} to be a distribution 8: end for 9: **Return** the hypothesis $H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$

- Compute importance of hypothesis β_t
- Update weights w_t

1: Initialize a vector of n uniform weights \mathbf{w}_1 2: for $t = 1, \ldots, T$

- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t

5: Choose
$$\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp(-\beta_t y^{(i)} h_t(x^{(i)}))$$

7: Normalize \mathbf{w}_{t+1} to be a distribution 8: end for

9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

- Compute importance of hypothesis β_t
- Update weights w_t

t = T

- 1: Initialize a vector of n uniform weights \mathbf{w}_1 2: for $t = 1, \ldots, T$
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights: $w_{t+1,i} = w_{t,i} \exp(-\beta_t y^{(i)} h_t(x^{(i)}))$
- 7:Normalize \mathbf{w}_{t+1} to be a distribution8:end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

- Final model is a weighted combination of members
 - Each member weighted by its importance

INPUT: training data $X, y = \{(x^{(i)}, y^{(i)})\}, i = 1 \dots n$ the number of iterations T

1: Initialize a vector of n uniform weights $\mathbf{w}_1 = \begin{bmatrix} \frac{1}{n}, \dots, \frac{1}{n} \end{bmatrix}$ 2: for $t = 1, \dots, T$

3: Train model h_t on X, y with instance weights \mathbf{w}_t

4: Compute the weighted training error rate of h_t : $\epsilon_t = \sum_{i:y_i \neq h_t(\mathbf{x}_i)} w_{t,i}$

5: Choose
$$\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp(-\beta_t y^{(i)} h_t(x^{(i)})), i = 1, \dots, n$$

7: Normalize \mathbf{w}_{t+1} to be a distribution:

$$w_{t+1,i} = \frac{w_{t+1,i}}{\sum_{j=1}^{n} w_{t+1,j}} \quad \forall i = 1, \dots, n$$

8: end for

9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

35

Train with Weighted Instances

- For algorithms like logistic regression, can simply incorporate weights w into the cost function
 - Essentially, weigh the cost of misclassification differently for each instance

$$J_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} w_i \left[y_i \log h_{\boldsymbol{\theta}}(\mathbf{x}_i) + (1 - y_i) \log \left(1 - h_{\boldsymbol{\theta}}(\mathbf{x}_i)\right) \right] + \lambda \|\boldsymbol{\theta}_{[1:d]}\|_2^2$$

- For algorithms that don't directly support instance weights (e.g., ID3 decision trees, etc.), use weighted bootstrap sampling
 - Form training set by resampling instances with replacement according to w

Base Learner Requirements

- AdaBoost works best with "weak" learners
 - Should not be complex
 - Typically high bias classifiers
 - Works even when weak learner has an error rate just slightly under 0.5 (i.e., just slightly better than random)
 - Can prove training error goes to 0 in O(log n) iterations
- Examples:
 - Decision stumps (1 level decision trees)
 - Depth-limited decision trees
 - Linear classifiers

Properties

- If a point is repeatedly misclassified
 - Its weight is increased every time
 - Eventually it will generate a hypothesis that correctly predicts it
- In practice AdaBoost does not overfit
- Does not use explicitly regularization

No overfitting

- Empirically, boosting resists overfitting
- Note that it continues to drive down the test error even AFTER the training error reaches zero

AdaBoost in Practice

Strengths:

- Fast and simple to program
- No parameters to tune (besides T)
- No assumptions on weak learner

When boosting can fail:

- Given insufficient data
- Overly complex weak hypotheses
- Can be susceptible to noise
- When there are a large number of outliers

Review

- Ensemble learning are powerful learning methods
- Bagging uses bootstrapping (with replacement), trains T models, and averages their prediction
 - Random forests vary training data and feature set at each split
- Boosting is an ensemble of weak learners that emphasizes mis-predicted examples
 - AdaBoost has great theoretical and experimental performance
 - Can be used with linear models or simple decision trees

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!