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Logistics

• HW 2 is on Piazza
– Due date: Friday, Oct 19
– Save Jupyter Notebook as PDF or generate PDF with results
– We run your code selectively, but if code doesn’t run we 

would like to see results
– Make sure that permissions are set so we can access your 

files if using cloud service
– Hosting it on Github privately is the best option

• Grading for HW 1 almost done
– Grades will be posted on Gradescope

• Midterm next Tuesday, Oct. 16
– Material until Decision trees and Bagging (including 

everything in lecture today)
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Review

• Metrics for evaluating classifiers
– Accuracy, error, precision, recall, F1 score
– AUC (area under the ROC curve) measures performance of 

classifier for different thresholds

• Feature selection methods
– Filters decide on each feature individually
– Wrappers select a subset of features by search strategy 

(fixing model and evaluating with cross-validation)
– Embedded methods (e.g., regularization) are part of 

training

• Decision trees are interpretable, non-linear models
– Greedy algorithm to train Decision Trees
– Works on categorical and numerical data 
– Node splitting done by highest Information Gain
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Outline

• Decision trees

– ID3 algorithm (use Information Gain for splitting)

– Solutions against overfitting (e.g., pruning)

• Lab

• Ensemble learning

– Reduce variance

– Decrease classification error

• Bagging method for designing ensemble 
learning
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Sample Dataset
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Categorical 
data



Decision Tree
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Learning Decision Trees
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Full Tree
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Splitting
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Split by the node that reduces uncertainty



Information Gain
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Example
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Example Information Gain
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Learning Decision Trees
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ID3 algorithm uses Information Gain
Information Gain reduces uncertainty on Y



When to stop?
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Case 1
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Case 2
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Overfitting
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Solutions against Overfitting
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• Pruning



Pruning Decision Trees
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Pruning Decision Trees
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Real-Valued Inputs
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Naïve Approach
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Threshold Splits
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Information Gain metric can be 
extended to numerical attributes



Interpretability
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Decision Boundary
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Decision Trees vs Linear Models

26Linear model Decision tree



Lab
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Lab
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Add Label “High” is Sales > 8



Lab
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Train and Test

Accuracy



Lab
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Pruning
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• Cross-validation for pruning
• FUN = prune.misclass indicates that classification 

error is metric to minimize



Pruning
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Outline

• Decision trees

– ID3 algorithm (use Information Gain for splitting)

– Overfitting solutions (e.g., pruning)

• Lab

• Ensemble learning

– Reduce variance

– Decrease classification error

• Bagging method for designing ensemble 
learning
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Decision Trees

How to reduce variance of single decision tree?



Ensemble Learning
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Build Ensemble Classifiers
• Basic idea

– Build different “experts”, and let them vote

• Advantages

– Improve predictive performance

– Easy to implement

– No too much parameter tuning

• Disadvantages

– The combined classifier is not transparent and 
interpretable 

– Not a compact representation
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Why do they work?

• Suppose there are 25 base classifiers

• Each classifier has error rate, 

• Assume independence among classifiers

• Probability that the ensemble classifier makes a 
wrong prediction:
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Practical Applications
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Netflix Prize
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General Idea
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