DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

October 9 2018

Logistics

- HW 2 is on Piazza
 - Due date: Friday, Oct 19
 - Save Jupyter Notebook as PDF or generate PDF with results
 - We run your code selectively, but if code doesn't run we would like to see results
 - Make sure that permissions are set so we can access your files if using cloud service
 - Hosting it on Github privately is the best option
- Grading for HW 1 almost done
 - Grades will be posted on Gradescope
- Midterm next Tuesday, Oct. 16
 - Material until Decision trees and Bagging (including everything in lecture today)

Review

- Metrics for evaluating classifiers
 - Accuracy, error, precision, recall, F1 score
 - AUC (area under the ROC curve) measures performance of classifier for different thresholds
- Feature selection methods
 - Filters decide on each feature individually
 - Wrappers select a subset of features by search strategy (fixing model and evaluating with cross-validation)
 - Embedded methods (e.g., regularization) are part of training
- Decision trees are interpretable, non-linear models
 - Greedy algorithm to train Decision Trees
 - Works on categorical and numerical data
 - Node splitting done by highest Information Gain

Outline

- Decision trees
 - ID3 algorithm (use Information Gain for splitting)
 - Solutions against overfitting (e.g., pruning)
- Lab
- Ensemble learning
 - Reduce variance
 - Decrease classification error
- Bagging method for designing ensemble learning

Sample Dataset

- Columns denote features X_i
- Rows denote labeled instances $\langle x^{(i)}, y^{(i)} \rangle$
- Class label denotes whether a tennis game was played

	Predic	tors		Response
Outlook	Temperature	Humidity	Wind	Class
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

 $\left\langle x^{(i)}, y^{(i)} \right\rangle$

Categorical data

Decision Tree

• A possible decision tree for the data:

 What prediction would we make for <outlook=sunny, temperature=hot, humidity=high, wind=weak> ?

Learning Decision Trees

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

Full Tree

Splitting

Would we prefer to split on X_1 or X_2 ?

Idea: use counts at leaves to define probability distributions, so we can measure uncertainty!

Split by the node that reduces uncertainty

Information Gain

- X = College Major
- Y = Likes "Gladiator"

Х	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Information Gain:

IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?

 $IG(Y \mid X) = H(Y) - H(Y \mid X)$

Example:

- H(Y) = 1
- H(Y|X) = 0.5

Example

Example Information Gain

Learning Decision Trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

 $\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$

Recurse

ID3 algorithm uses Information Gain Information Gain reduces uncertainty on Y

When to stop?

First split looks good! But, when do we stop?

Case 1

Case 2

Overfitting

Solutions against Overfitting

- Standard decision trees have no learning bias
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Must introduce some bias towards simpler trees
- Many strategies for picking simpler trees
 - Fixed depth
 - Minimum number of samples per leaf
- Pruning

Pruning Decision Trees

Split data into training and validation sets

Grow tree based on *training set*

Do until further pruning is harmful:

- 1. Evaluate impact on validation set of pruning each possible node (plus those below it)
- 2. Greedily remove the node that most improves validation set accuracy

Pruning Decision Trees

- Pruning of the decision tree is done by replacing a whole subtree by a leaf node.
- The replacement takes place if a decision rule establishes that the expected error rate in the subtree is greater than in the single leaf.
- For example,

Real-Valued Inputs

What should we do if some of the inputs are real-valued?

Infinite number of possible split values!!!

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

Naïve Approach

"One branch for each numeric value" idea:

Hopeless: hypothesis with such a high branching factor will shatter *any* dataset and overfit

Threshold Splits

- Binary tree: split on attribute X at value t
 - One branch: X < t</p>
 - Other branch: $X \ge t$
- Requires small change
 - Allow repeated splits on same variable along a path

Information Gain metric can be extended to numerical attributes

Interpretability

- Each internal node tests an attribute x_i
- One branch for each possible attribute value x_i=v
- Each leaf assigns a class y
- To classify input *x*: traverse the tree from root to leaf, output the labeled *y*

Human interpretable!

Decision Boundary

- Decision trees divide the feature space into axisparallel (hyper-)rectangles
- Each rectangular region is labeled with one label

- or a probability distribution over labels

Decision Trees vs Linear Models

> library(tree)

~

- > library(ISLR)
- > fix(Carseats)

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age
1	9.5	138	73	11	276	120	Bad	42
2	11.22	111	48	16	260	83	Good	65
3	10.06	113	35	10	269	80	Medium	59
4	7.4	117	100	4	466	97	Medium	55
5	4.15	141	64	3	340	128	Bad	38
6	10.81	124	113	13	501	72	Bad	78
7	6.63	115	105	0	45	108	Medium	71
8	11.85	136	81	15	425	120	Good	67
9	6.54	132	110	0	108	124	Medium	76
10	4.69	132	113	0	131	124	Medium	76
11	9.01	121	78	9	150	100	Bad	26
12	11.96	117	94	4	503	94	Good	50
13	3.98	122	35	2	393	136	Medium	62
14	10.96	115	28	11	29	86	Good	53
15	11.17	107	117	11	148	118	Good	52

Add Label "High" is Sales > 8

```
> High=ifelse(Sales<=8, "No", "Yes")</pre>
> Carseats=data.frame(Carseats,High)
> head(Carseats)
 Sales CompPrice Income Advertising Population Price ShelveLoc Age Education Urban US High
1 9.50
             138
                     73
                                 11
                                           276
                                                 120
                                                           Bad 42
                                                                         17
                                                                              Yes Yes Yes
2 11.22
             111
                     48
                                 16
                                           260
                                                  83
                                                          Good 65
                                                                         10
                                                                              Yes Yes
                                                                                      Yes
3 10.06
             113
                     35
                                 10
                                           269
                                                 80
                                                       Medium 59
                                                                         12 Yes Yes Yes
4 7.40
             117
                    100
                                  4
                                           466
                                                  97
                                                       Medium 55
                                                                         14
                                                                              Yes Yes
                                                                                        No
5 4.15
             141
                    64
                                  3
                                           340
                                                 128
                                                           Bad 38
                                                                         13
                                                                              Yes No
                                                                                        No
6 10.81
             124
                    113
                                 13
                                           501
                                                  72
                                                           Bad
                                                               78
                                                                         16
                                                                               No Yes Yes
>
```

Train and Test


```
> tree.carseats
node), split, n, deviance, yval, (yprob)
      * denotes terminal node
  1) root 200 271.500 No ( 0.58500 0.41500 )

    ShelveLoc: Bad, Medium 157 196.500 No (0.68153 0.31847)

      4) ShelveLoc: Bad 46 31.630 No ( 0.89130 0.10870 )
        8) Price < 98.5 13 16.050 No ( 0.69231 0.30769 )</pre>
        16) Income < 57 6 0.000 No ( 1.00000 0.00000 ) *
        17) Income > 57 7 9.561 Yes (0.42857 0.57143 ) *
        9) Price > 98.5 33 8.962 No ( 0.96970 0.03030 )
        18) Income < 101 28 0.000 No ( 1.00000 0.00000 ) *
        19) Income > 101 5 5.004 No ( 0.80000 0.20000 ) *

    ShelveLoc: Medium 111 149.900 No (0.59459 0.40541)

       10) Price < 86.5 7 0.000 Yes ( 0.00000 1.00000 ) *
      11) Price > 86.5 104 136.500 No ( 0.63462 0.36538 )
         22) Age < 50.5 47 64.620 Yes ( 0.44681 0.55319 )
           44) Advertising < 12.5 37 50.620 No ( 0.56757 0.43243 )
             88) Income < 61.5 17 12.320 No ( 0.88235 0.11765 )</pre>
             176) Population < 203.5 5 6.730 No ( 0.60000 0.40000 ) *
             177) Population > 203.5 12 0.000 No ( 1.00000 0.00000 ) *
             89) Income > 61.5 20 24.430 Yes ( 0.30000 0.70000 )
              178) Price < 140 15 11.780 Yes ( 0.13333 0.86667 )
                356) Education < 14.5 10 0.000 Yes ( 0.00000 1.00000 )
               357) Education > 14.5 5 6.730 Yes ( 0.40000 0.60000 ) *
              179) Price > 140 5 5.004 No ( 0.80000 0.20000 ) *
           45) Advertising > 12.5 10 0.000 Yes ( 0.00000 1.00000 ) *
         23) Age > 50.5 57 58.670 No ( 0.78947 0.21053 )
           46) Advertising < 4.5 31 8.835 No ( 0.96774 0.03226 )</p>
             92) Age < 79.5 25 0.000 No ( 1.00000 0.00000 ) *
             93) Age > 79.5 6 5.407 No ( 0.83333 0.16667 ) *
           47) Advertising > 4.5 26 35.430 No ( 0.57692 0.42308 )
             94) CompPrice < 118.5 9 0.000 No ( 1.00000 0.00000 ) *
             95) CompPrice > 118.5 17 22.070 Yes ( 0.35294 0.64706 )
```

Pruning

```
> set.seed(3)
> cv.carseats=cv.tree(tree.carseats,FUN=prune.misclass)
> prune.carseats=prune.misclass(tree.carseats,best=12)
> plot(prune.carseats)
> text(prune.carseats,pretty=0)
```

- Cross-validation for pruning
- FUN = prune.misclass indicates that classification error is metric to minimize

Pruning

Outline

- Decision trees
 - ID3 algorithm (use Information Gain for splitting)
 - Overfitting solutions (e.g., pruning)
- Lab
- Ensemble learning
 - Reduce variance
 - Decrease classification error
- Bagging method for designing ensemble learning

Bias/Variance Tradeoff

Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

How to reduce variance of single decision tree?

Ensemble Learning

Consider a set of classifiers h_1 , ..., h_L

Idea: construct a classifier $H(\mathbf{x})$ that combines the individual decisions of $h_1, ..., h_L$

- e.g., could have the member classifiers vote, or
- e.g., could use different members for different regions of the instance space

Successful ensembles require diversity

- Classifiers should make different mistakes
- Can have different types of base learners

Build Ensemble Classifiers

- Basic idea
 - Build different "experts", and let them vote
- Advantages
 - Improve predictive performance
 - Easy to implement
 - No too much parameter tuning
- Disadvantages
 - The combined classifier is not transparent and interpretable
 - Not a compact representation

Why do they work?

- Suppose there are 25 base classifiers
- Each classifier has error rate, $\mathcal{E} = 0.35$
- Assume independence among classifiers
- Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} \binom{25}{i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$$

Practical Applications

Goal: predict how a user will rate a movie

- Based on the user's ratings for other movies
- and other peoples' ratings
- with no other information about the movies

This application is called "collaborative filtering"

Netflix Prize: \$1M to the first team to do 10% better then Netflix' system (2007-2009)

Winner: BellKor's Pragmatic Chaos – an ensemble of more than 800 rating systems

Netflix Prize

Machine learning competition with a \$1 million prize

Rank	Team Name	Best Score	5 Improvement	Last Submit
1	The Ensemble	0.8553	10.10	2009-07-26 18:
2	Delifior a Pragillare onaus	0.0004	10.09	2009-07-26 18:
Gran	nd Prize - RMSE <= 0.8563			
3	Grand Prize Team	0.8571	9.91	2009-07-24 13:
4	Opera Solutions and Vandelay United	0.8573	9.89	2009-07-25 20:
5	Vandelay Industries !	0.8579	9.83	2009-07-26 02
6	PragmaticTheory	0.8582	9.80	2009-07-12 15:
7	BellKor in BigChaos	0.8590	9.71	2009-07-26 12
8	Dace	0.8603	9.58	2009-07-24 17:
9	Opera Solutions	0.8611	9.49	2009-07-26 18:
10	BellKor	0.8612	9.48	2009-07-26 17:
11	BigChaos	0.8613	9.47	2009-06-23 23:
12	Feeds2	0.8613	9.47	2009-07-24 20:
Proc	aress Prize 2008 - RMSE = 0.8616 - V	/inning Tean	n: BellKor in BigCh	805
13	xiangliang	0.8633	9.26	2009-07-21 02
14	Gravity	0.8634	9.25	2009-07-26 15:
15	Ces	0.8642	9.17	2009-07-25 17:
16	Invisible Ideas	0.8644	9.14	2009-07-20 03:
17	Just a guy in a garage	0.8650	9.08	2009-07-22 14
18	Craig Carmichael	0.8656	9.02	2009-07-25 16:
19	J Dennis Su	0.8658	9.00	2009-03-11 09:
20	acmehill	0.8659	8.99	2009-04-16 06:
Proc	ress Prize 2007 - RMSE = 0.8712 - W	Vinning Team	r: KorBell	

Londorhoard

General Idea

Majority Votes

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!