
How Tracking Companies Circumvent Ad Blockers
Using WebSockets

Muhammad Ahmad Bashir, Sajjad Arshad, Engin Kirda, William Robertson, Christo Wilson
Northeastern University

{ahmad, arshad, ek, wkr, cbw}@ccs.neu.edu

Abstract—In this study of 100,000 websites, we document
how Advertising and Analytics (A&A) companies have used
WebSockets to bypass ad blocking, exfiltrate user tracking data,
and deliver advertisements. Specifically, we leverage a long-
standing bug in Chrome (the world’s most popular browser)
in the chrome.webRequest API that prevented blocking ex-
tensions from being able to interpose on WebSocket connections.
We conducted large-scale crawls of top publishers before and
after this bug was patched in April 2017 to examine which
A&A companies were using WebSockets, what information was
being transferred, and whether companies altered their behavior
after the patch. We find that a small but persistent group of
A&A companies use WebSockets, and that several of them are
engaging in troubling behavior, such as browser fingerprinting,
exfiltrating the DOM, and serving advertisements, that would
have circumvented blocking due to the Chrome bug.

I. INTRODUCTION

The use of techniques to block online ads and prevent track-
ing on the web has proliferated in recent years. Measurements
studies estimate that Adblock Plus is used by roughly 16–37%
of web users [41], [30], and numerous other extensions like
Ghostery, Disconnect, Privacy Badger, and uBlock Origin have
devoted user bases.

In response to the proliferation of blocking and privacy
tools, online Advertising and Analytics (A&A) companies
have fought back in a variety of ways. This includes industry
self-regulation such as the Ad Choices initiative [3], as well
as technological mechanisms like anti-adblocking scripts [33],
[36]. Most alarmingly, some companies have attempted to
circumvent privacy tools, with the most famous case being
Google’s evasion of Safari’s third-party cookie blocking pol-
icy, which resulted in a $22.5M settlement with the FTC [12].

In August 2016, privacy conscious users began to notice ads
appearing on specific websites on Chrome, despite the use of
ad blocking extensions [21], [42]. Online sleuths determined
that (1) these ads were being downloaded via WebSockets be-
cause (2) a long dormant bug in the chrome.webRequest
API in Chromium [23] allowed WebSocket connections to
bypass ad blocking extensions. We refer to this issue as the
webRequest Bug (WRB). Google patched the WRB in Chrome
58, released on April 19, 2017 [40].

In this paper, we study the behavior of A&A companies
with respect to the WRB. Prior to April 19, 2017, there
existed a five year window in which blocking extensions in
Chrome (the world’s most popular web browser [48]) could
be circumvented through the use of WebSockets. We ask the

following questions: which A&A companies, if any, decided
to leverage this bug? Similarly, after the release of Chrome
58, did A&A companies continue to use WebSockets, or did
they revert to HTTP/S? These questions are important, as they
speak to the lengths that A&A companies are willing to go to
track users and monetize impressions.

To answer these questions, we performed four crawls of the
top Alexa websites: two just prior to the release of Chrome
58, and two after. Our crawls were conducted using stock
Chrome coupled with custom instrumentation to record the
inclusion tree of resources within each webpage [4], [7], [29]
(see section III for details).

Using this data, we make the following key findings:
• Although we find that WebSocket usage is rare across

the web (∼2% of publishers), 55–61% of WebSockets
are related to tracking and advertising in some way. Fur-
thermore, we find that A&A sockets are more prevalent
on Alexa top-10K publishers.

• We observe 91 A&A domains initiating and 17 A&A do-
mains receiving WebSocket connections, including some
of the largest players in the online advertising ecosystem
(e.g., Google and Facebook).

• We find that the overall frequency of WebSockets use by
A&A domains did not change after the release of Chrome
58, although the number of unique initiators dropped
from 72 to 19, as major ad networks (e.g., Google)
discontinued their use.

• We find sensitive information being sent over WebSockets
to A&A companies. 33across collects browser finger-
prints [43], [35], [1], [25], [15], while Hotjar collects
the entire DOM, which can contain sensitive information
such as search queries, unsent messages, etc., within
the given webpage. Lockerdome was using WebSockets
to serve URLs to ads. These results highlight that the
WRB did enable A&A companies to circumvent blocking
extensions in ways that users may find objectionable.

II. BACKGROUND

We begin by providing an overview of WebSockets, the
webRequest API, and a brief timeline of the WRB.

A. WebSockets

The WebSocket protocol, standardized by RFC 6455 in
2011, gave JavaScript developers access to a bidirectional,

2012

Original bug
reported

Users report
unblocked ads

Patch
Landed

Chrome 58
released

* *
2013 2014 2015 2016 2017 2018

* *

* Represents when our crawls were done

Fig. 1: Timeline for the WRB.

socket-like network interface, in which client-side JavaScript
can open a WebSocket connection (with or without TLS
encryption) to a server. This protocol enables developers to
create web applications that receive real-time information or
“pushed” messages from the server-side, without wasting bytes
or incurring latency due to the constant construction of new
TCP connections.

B. webRequest API

As of 2017, major browser vendors like Firefox and Edge
support the Chrome extension API. One of its key capabilities
is the chrome.webRequest API, which allows extensions
to inspect, modify, and even drop outgoing network requests.
The chrome.webRequest.onBeforeRequest callback
is often used by ad blockers and privacy preserving tools to
filter undesirable outgoing network requests [23].

C. The Rise and Fall of a Bug

In May 2012, users created a bug report in the Chromium is-
sue tracker after observing that WebSocket connections did not
trigger the chrome.webRequest.onBeforeRequest
callback [23]. We refer to this as the webRequest Bug (WRB).

The WRB languished unpatched for four years. In late 2014,
AdBlock Plus users began to report that unblockable ads were
appearing on specific webpages, but only in Chrome [2]. By
mid-2016, EasyList and uBlock Origin users were also ob-
serving unblockable ads [21], [42]. The users investigated and
determined that the ads were being loaded via WebSockets,
i.e., the WRB was being leveraged by some ad networks to
circumvent blockers. Blocking extensions implemented com-
plicated workarounds to mitigate the WRB in the absence of
a permanent bugfix [2], [20]. The bug was finally patched in
Chrome 58, released in April 19, 2017 [40]. Figure 1 shows
the timeline of the key events related to the WRB.

III. METHODOLOGY

The goal of our study is to analyze the usage of WebSockets
on the web, and to determine whether A&A companies are us-
ing them to bypass ad blockers. In this section, we outline our
data collection methodology. We also describe the inclusion
trees produced by our crawler, and explain how we use these
to detect WebSockets.

A. Inclusion Tree

To determine which A&A companies are using WebSockets
to circumvent ad blocking, we are not only interested in
determining the existence of a WebSocket on a webpage, but

Source for pub/index.html:

<html><body>
 <script src=”script.js”></script>
 <object data=”banner/flash.swf”></object>
 <script src=”tracker/script.js”></script>

 <script src=”ads/script.js”></script>
 <iframe src=”ads/frame.html”>
 <html><body>
 <script src=”script.js”></script>

 </body></html>
 </iframe>
</body></html>

Source code for ads/script.js:

let ws =
 new WebSocket(“ws://adnet/data.ws”, …);
ws.onopen = function(e) { ws.send(“...”); }

(DOM Tree) (Inclusion Tree)

tracker/
script.js

pub/
index.html

tracker/
image.jpg

ads/
script.js

ads/
frame.html

ads/
script.js

adnet/
data.ws

pub/
script.js

banner/
flash.swf

ads/
image.img

Fig. 2: Sample DOM tree with corresponding inclusion tree.
Note how a WebSocket request becomes a child to the
requesting JavaScript resource.

also figuring out which parties established the socket in the
first place. Prior studies have shown that relying on HTTP
requests to figure out resource inclusions can be misleading
due to dynamic code (e.g., JavaScript, Flash etc.) from third
parties [7]. This occurs because the HTTP Referer header is
set to the first-party domain, even if the resource making the
request originated from a third-party. Furthermore, using DOM
trees to capture resource inclusions also does not work because
the DOM captures syntactic structures rather than semantic
relationships between resource inclusions.

To solve this problem, we use inclusion trees, originally
introduced by Arshad et al. [4]. Inclusion trees capture the
semantic relationship between resource inclusions in websites.
Figure 2 shows a sample DOM tree and its corresponding
inclusion tree. We capture inclusion trees from Chrome by
leveraging the Chrome Debugging Protocol [11]. Specifically,
to capture the inclusion relationships within Chrome using
the Debugger domain, we track JavaScript by collecting
the scriptParsed events, which are triggered by the
execution of inline and remote scripts. We observe fur-
ther resource requests via the requestWillBeSent and
responseReceived events in the Network domain. Us-
ing these two events, we can capture most of the dynamic
inclusion chains. To capture the inclusion of iframes, we
collect frameNavigated events in the Page domain.

B. WebSocket Detection and Labeling

A main distinguishing feature of our tool from previous
work [4], [7], [29] is its ability to detect WebSocket
requests initiated by JavaScript. In our implementation,
we treat WebSockets as child nodes of the JavaScript
node responsible for initiating them. Figure 2 shows
how adnet/data.ws becomes the child of ads/script.js. To
identify WebSocket requests, we capture a number of
events in the Network domain: webSocketCreated,
webSocketWillSendHandshakeRequest, and

2

adnet/data.ws
ads/script.js

webSocketHandshakeResponseReceived for
socket initiation; webSocketFrameSent and
webSocketFrameReceived for data collection; and
webSocketClosed for socket termination.

Detecting A&A Resources. To determine whether a socket
was initiated by scripts or objects that originated from A&A
domains, we first derive a set of A&A domains from the
inclusion chains provided by Bashir et al. [7]. Each resource
in [7] is tagged as A&A or non-A&A using the EasyList and
EasyPrivacy rule lists; from this dataset, we extract a set of
all 2nd-level domains D. Let a(d) and n(d) be the number of
times a given 2nd-level domain d ∈ D was labeled as A&A
and non-A&A, respectively. We construct our final A&A set
D′ containing all d ∈ D where a(d) ≥ 0.1 ∗ n(d), i.e., we
filter out 2nd-level domains that are labeled as A&A less than
10% of the time to eliminate false positives.

To detect WebSockets that were initiated by A&A resources,
we descend the branch of the inclusion tree that includes the
socket. If the domains of any of the parent resources are
present in D′, we consider the socket to be included by an
A&A resource. We refer to such sockets as A&A sockets.

C. Data Collection

As an initial seed of websites to crawl, we collected 1.8
million unique websites from 17 distinct categories provided
by Alexa Top Categories. We sampled the top 5.8K websites
from each category. Additionally, we sampled 5.8K websites
from Alexa’s top 1 million. This approach gives us a wide
diversity of popular and unpopular websites across many
different categories. After removing duplicates around 100K
websites remained, which we use for our crawls.

We built a crawler on top of the Chrome Remote Debugging
Protocol to drive the Chrome browser. The crawler works as
follows: for every website w in our list, it visits the homepage.
It then proceeds to extract all links L from the homepage that
points to w. Our crawler randomly visits 15 links from L,
waiting one minute between subsequent visits.

Overall, we performed four crawls over our sampled 100K
websites. Two crawls were performed just prior to the re-
lease of Chrome 58 (which included the patch for the WRB
bug) [40] between April 2–April 5 and April 11–April 16,
2017. To observe if the patch affected the usage of WebSockets
by websites and A&A companies, we ran two more crawls
after the release of Chrome 58. The first of these crawls was
performed right after the patch between May 07–May 12,
2017. The second crawl was performed between October 12–
October 16, 2017. Table I shows the high-level statistics for
all four crawls in our study.

IV. ANALYSIS

In this section, we analyze our dataset to understand the
usage of WebSockets, the A&A companies involved, and the
content being sent and received over the socket.

TABLE I: High-level statistics for our crawls.
% Sites % Sockets # Unique % Sockets # Unique

Crawl Dates w/ w/ A&A A&A w/ A&A A&A
Sockets Initiators Initiators Receivers Receivers

Apr 02–05, 2017 2.1 60.2 72 72.0 14
Apr 11–16, 2017 2.4 61.0 61 73.0 16
May 07–12, 2017 1.6 60.2 17 68.3 13
Oct 12–16, 2017 2.5 54.9 19 55.1 14

A. Overall WebSocket Usage

We begin by providing an overview of WebSocket usage
in Table I. We observe that only ∼2% of the websites use
WebSockets (column 2), with 6–12 WebSocket connections
on average per website that uses the technology.

Among the WebSockets we observe, >90% contact a third-
party domain (i.e., the WebSocket was cross-origin) and 55–
73% contact an A&A domain (column 5). Across all four
crawls, we observe 383 unique third-party domains and 17
A&A domains being contacted through WebSockets. Simi-
larly, 55–61% of the WebSockets are initiated by a resource
from an A&A domain (column 3). In total, we observe re-
sources from 91 unique A&A domains initiating WebSockets.

Figure 3 shows the CDF of the number of WebSocket
connections with respect to initiators and receivers. We see
that A&A initiators and receivers are involved in an order
of magnitude more WebSocket connections than non-A&A
initiators and receivers. This reinforces our findings from
Table I: of the domains that use WebSockets, the heaviest
users are involved in A&A.

Figure 4 shows the CDF of number of unique parties
contacted by initiators and contacting receivers. We see that
A&A initiators contact only a few select partners, whereas
A&A receivers are contacted by many parties. More than 47%
of the A&A receivers were contacted by ≥10 parties. This
accords with the results from Table I: there is dramatic fan-in
from the 91 A&A initiators to the 17 A&A receivers.

Our overall observations about WebSocket usage are similar
to those of Snyder et al. [44]. In [44], the authors crawled the
Alexa Top-10K websites in 2016 and observed 544 (5.4%)
sites using WebSockets, while 65% of those connections were
blocked by AdBlock Plus1. Contrasting this to our results in
Table I, we observed fewer websites using WebSockets, and a
somewhat lower fraction of A&A sockets. These differences
may be due to the larger sample size and broader coverage of
less popular websites in our crawls.

Publishers. Now that we know that WebSockets are
being used by some A&A domains, we ask: Is this practice
widespread across publishers? To answer this question, we
plot Figure 5, showing the fraction of A&A and non-A&A
WebSockets observed over publishers sorted by Alexa rank.
We see that the fraction of A&A sockets is twice that of non-
A&A sockets across all ranks. We also see that both types
of WebSockets are most prevalent on highly-ranked domains,
with a drop occurring between 10K and 20K. The fraction of
A&A sockets in top 10K publishers is 4.5 times higher than

1Snyder et al. crawled using Firefox, which was not impacted by the WRB.

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
D

F

Count (# sockets)

Non A&A I

A&A I

Non A&A R

A&A R

Fig. 3: Initiators and Receivers involved
in WebSocket creations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

C
D

F

Number of parties

Non A&A I

A&A I

Non A&A R

A&A R

Fig. 4: Number of parties contacted by
WebSocket Initiators and Receivers.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

0 200k 400k 600k 800k 1M

F
ra

c
ti

o
n

 o
f

S
o

c
k

e
ts

Alexa Site Rank (bins of 10,000)

A&A

Non A&A

Fig. 5: Alexa rank of publishers that have
WebSockets.

TABLE II: Top 15 WebSocket initiators
sorted by the total number of unique
receivers. A&A initiators are in bold.

Receivers
Initiator Total A&A Socket Count
facebook 35 11 441

espncdn 35 0 92
h-cdn 30 0 39

doubleclick 29 9 250
slither 25 0 33
google 23 11 381

youtube 18 8 129
cloudflare 15 1 873

addthis 14 8 101
hotjar 13 6 2407

cloudfront 13 4 4039
googlesyndication 10 6 71

adnxs 8 3 31
googleapis 7 0 157

sharethis 6 4 20

TABLE III: Top 15 A&A domains re-
ceiving WebSocket connections, sorted
by the total number of unique initiators.

Initiators
Receiver Total A&A Socket Count
intercom 156 15 5534
33across 57 19 1381

zopim 44 12 19820
realtime 41 27 1612

smartsupp 26 4 670
feedjit 25 10 3017

inspectlet 25 6 836
hotjar 17 11 2255
disqus 17 13 4802

freshrelevance 10 2 404
lockerdome 10 8 471

pusher 5 3 22
velaro 4 3 62

inside-graph 2 2 28
simpleheatmaps 1 1 93

TABLE IV: Top 15 initiator/receiver
pairs communicating via WebSockets.
A&A domains are in bold.

Initiator Receiver Socket Count
cloudfront visitors 3304

webspectator realtime 1285
cloudfront pusher 298
cloudfront freshrelevance 281

google zopim 172
blogger feedjit 158
hotjar intercom 144
cdn77 smartsupp 122

acenterforrecovery intercom 114
facebook zopim 112

vatit intercom 110
plymouthart intercom 108

welchllp intercom 105
biozone intercom 101

getambassador pusher 101
A&A domain to itself 41,056

that of non-A&A sockets. This demonstrates that WebSocket
usage, especially A&A sockets, is widespread amongst top
publishers.

Before and After. Chrome rolled out the patch for WRB in
version 58 on April 19, 2017. To understand if the release of
the patch affected the usage of WebSockets, we can compare
the statistics in Table I from our crawls before and after this
date. Although we see that there has been a significant drop
in the number of unique A&A domains initiating WebSockets
over time (column 4), the fraction of A&A-initiated sockets
has essentially remained the same (column 3). In total, 57
A&A initiators disappeared between our first and last crawl,
including Google, Facebook, and AddThis. It is unclear why
these major advertising companies abandoned WebSockets.

With respect to A&A socket receivers, Table I shows that
there has been essentially no change over time (column 6).
As we show in § IV-B, many of the A&A receivers provide
services that are dependent on WebSockets (e.g., real-time
commenting and chat), thus it is not surprising that these
companies have not altered their software.

B. Initiators and Receivers

Next, we take a deeper look into the domains that ini-
tiate and receive WebSockets. Table II shows the top 15
domains whose resources initiate WebSockets; A&A domains
are shown in bold. We observe that scripts from some of
the largest players in the online advertising ecosystem (e.g.,
Google, Facebook, and AppNexus) create WebSockets to

multiple other A&A domains. This demonstrates that major
ad exchanges have embraced WebSockets, although as noted
above, some have discontinued this practice.

Table III shows A&A domains that we observe receiving
WebSocket connections. Only 2.5% of the initiators that create
WebSockets to these domains are A&A domains, meaning
many of the incoming connections are initiated by benign
domains, or even first-party publishers. These WebSockets
are particularly problematic with respect to the WRB: since
the scripts that initiated the WebSockets were not blocked
by AdBlock Plus, the only way to stop these connections
would be to block the WebSockets themselves, which was
not possible prior to Chrome 58.

In contrast to the initiators in Table II, the A&A receivers
are less well-known companies that provide a variety of
services. The most recognizable company, Disqus, provides
user comment boards as a service to publishers; it is also
an ad network that enables publishers to monetize their
comment boards by displaying targeted ads. 33across and
Lockerdome are advertising platforms. Inspectlet, Hotjar, and
SimpleHeatmaps are session replay services that track user
interactions within websites to generate detailed analytical
heatmaps of mouse movements, click, and keystrokes [13].
Zopim, Velaro, Smartsupp, and Intercom provide customer
service live-chat widgets.

The variety of business models offered by the receivers in
Table II reveals an important point: WebSockets are being used
to serve advertisements and to track users. The former was

4

TABLE V: Items being sent by and received by A&A domains
via WebSockets and HTTP/S.

WebSockets HTTP/S
Sent Item Count % Count %

User Agent 39,893 100.0 99,942,662 100.0
Cookie 27,968 70.11 22,752,063 22.77

IP 2,458 6.16 896,162 0.90
User ID 1,694 4.25 1,116,111 1.12

Screen 1,370 3.43 104,794 0.10
Device 1,370 3.43 177,101 0.18

Browser 1,368 3.43 89,614 0.09
Viewport 1,366 3.42 336,704 0.34

Scroll Position 1,366 3.42 291 0.00
Orientation 1,366 3.42 71 0.00
First Seen 1,366 3.42 8,148 0.01
Resolution 1,366 3.42 132,742 0.13
Language 722 1.81 914,628 0.92

DOM 581 1.46 8,587 0.01
Binary 397 1.00 6,267 0.01

No data 7,150 17.92 - -
Received Item Count % Count %

HTML 18,976 47.57 11,599,601 11.61
JSON 4,976 12.47 1,633,849 1.63

JavaScript 356 0.89 27,027,458 27.04
Image 125 0.31 21,324,840 21.34
Binary 100 0.25 496,929 0.50

No data 8,575 21.49 - -

noticed by users [21], [42] and led to the patching of the
WRB, but to the best of our knowledge the latter has not been
reported. We examine the contents of WebSocket messages in
detail in § IV-C.

Table IV shows the top 15 initiator/receiver pairs that
created A&A sockets (i.e., one or both of the parties must
be an A&A domain), sorted by total WebSockets. Note that
we aggregate cases where the initiator and receiver are the
same and present the total in the last row of Table IV.
Unsurprisingly, the vast majority of A&A sockets fall into
this category (e.g., we observe 17,968 WebSockets initiated
by Zopim to themselves). The cases where the initiator and
receiver are different are more interesting, in the sense that
these pairs of companies made explicit choices to interface
via WebSockets. These cases are also more troubling from a
privacy perspective, since the WRB may have prevented block-
ers from halting information flows to third-parties (assuming
the initiator’s script was not blocked in the first place).

C. Content Analysis

In this section, we investigate the content of messages being
sent and received over the WebSockets. For sent messages,
we would like to know if any Personally Identifiable Infor-
mation (PII) or fingerprinting-related browser state are being
sent, since A&A domains can use this information to track
users [43], [35], [1], [25], [15]. For received messages, we are
interested in whether ad images or JavaScript (that can be used
to further exfiltrate data or retrieve ads) are being downloaded.

Table V shows different items that we observe being sent
and received over the A&A sockets. For comparison, we
also present statistics on how frequently we observed those
same items being sent/received over HTTP/S to any A&A
domain. Many of the items, such as user-agents, cookies,
and IP addresses, are self-explanatory. “User ID” refers to
unique identifiers related to the user such as Account ID, Client

ID, and User ID itself. “Browser” contains the fingerprinting
variables used to identify Browser Type and Browser Family,
whereas “Device” refers to Device Type and Device Family.
“First seen” appears to be the date on which the user’s cookie
was created. We extracted all of these variables from raw
network traffic by manually inspecting the flows and building
up a large library of regular expressions.

In all cases, we observe a greater percentage of private infor-
mation being exfiltrated via WebSockets than over HTTP/S.
This includes typical stateful-tracking data such as cookies,
IP addresses, and unique identifiers. Perhaps more surprising
are the ∼3.4% of WebSockets where browser fingerprinting
data (e.g., screen size and orientation) was exfiltrated; we
observed 59 initiator/receiver pairs involved in this practice,
with 33across being the receiver in 97% of the pairs. Most
surprising were the ∼1.5% of WebSockets where the entire
DOM was serialized and uploaded, in this case to Hotjar, for
the purposes of enabling session replays of user activity [13].
The DOM is potentially very privacy-sensitive, as it may
reveal search queries, sensitive interests, unsent messages,
etc., within the given webpage. Finally, we observed binary-
encoded data being sent on 1% of WebSockets, but we were
unable to decode it. The results in Table V highlight that the
WRB allowed trackers to circumvent blockers and implement
aggressive tracking techniques.

Next, we examine the information received over A&A
sockets. Of the 78.5% WebSockets that did receive any data,
WebSockets downloaded a greater percentage of HTML and
JSON, as compared to JavaScript and images which were
downloaded more often over HTTP/S.

We did not observe any ad images being sent directly
over WebSockets (we checked for binary and base64 encoded
media files). However, we did find that Lockerdome was
sending URLs to ad images in their WebSocket responses,
along with meta-data such as image captions, heights, and
widths. These images were hosted on cdn1.lockerdome.com,
which was not blacklisted in EasyList, meaning that the
WRB was effectively allowing Lockerdome to circumvent ad
blockers. Figure 6 shows three examples of these ads, which
are emblematic of the low-quality “clickbait” that is served
by unscrupulous ad networks and Content Recommendation
Networks [8]. Furthermore, these are the same types of ads
that were flagged by users in the WRB bug reports [21], [42].
This demonstrates that there are ad networks who were willing
to exploit the WRB to serve ads, and that unsurprisingly, these
shady ad networks cater to shady advertisers.

V. RELATED WORK

The Online Ad Ecosystem. There are a plethora of
empirical studies that have measured the online advertising
ecosystem. Barford et al. [6] looked at the major ad networks,
targeted ads, and associated user characteristics on the web
by mapping the online adscape, whereas Rodriguez et al.
measured the ad ecosystem on mobile devices [47]. Gill et
al. [18] used browsing traces to study the economy of online
advertising and discovered that most of the revenue is skewed

5

cdn1.lockerdome.com

Fig. 6: Example of ads received over WebSockets. Left: “Odd
Trick To Fix Sagging Skin Is Absolutely Genius”. Center:
“Study Reveals What Just A Single Diet Soda Does To You”.
Right: “Win an iPad Air 2 from Addicting Games!”

towards a few big companies. Acar et al. [1] conducted crawls
over the Alexa Top-3K to find user identifiers being shared
across domains. Similarly, Cahn et al. [9] observed that <1%
of the trackers are present on 75% of Alexa Top-10K websites.
Falahrastegar et al. [16] take a look at online trackers across
geographic regions.

Other empirical studies have focused more on the individual
implications of targeted advertising. Guha et al. [19] developed
a controlled and systematic method for measuring online ads
on the web based on trained personas. Carrascosa et al. [10]
used these methods to prove that advertisers use sensitive
attributes about users when targeting ads. Bashir et al. [7]
used retargeted ads to determine information flows between ad
exchanges. Olejnik et al. [38] noticed winning bid prices being
leaked during Real Time Bidding (RTB) auctions and used
this information to discover ad exchanges involved in cookie
matching, as well as the relative value of different users.

Researchers have also studied malicious and bad practices in
the advertising ecosystem. Zarras et al. [49] studied malicious
ad campaigns and the ad networks associated with them,
whereas Bashir et al. [8] found that some advertisers are not
following industry guidelines and are serving poor quality ads.

Tracking Mechanisms. Krishnamurthy et al. were one of
the first to bring attention to the pervasiveness of trackers and
their privacy implications for users [26]. Since then, several
studies have documented the evolution of online tracking on
the web [27], [28], [9], [14].

Advertisers have upgraded their tracking techniques over
time. Some of the techniques they employ include persis-
tent cookies [24], local state in browser plugins [45], [5],
browsing history through extensions [46], and fingerprinting
methods [32], [37], [43], [35], [1], [25], [15], [14]. To expand
users’ interest profiles, advertisers share tracking information
with each other through cookie matching [1], [38], [17], [7].

Anti-tracking. To avoid pervasive tracking, users are in-
creasingly adopting tools that block trackers and ads [41], [30].
Papaodyssefs et al. [39] proposed the use of private cookies
to mitigate tracking, while Nikiforakis et al. added entropy
to the browser to combat fingerprinting [34]. Merzdovnik et
al. and Iqbal et al. performed large scale measurements of
blocking extensions and techniques to determine which are
most effective [31], [22]. Snyder et al. [44] performed a
browser feature usage survey and showed that ad and tracking
blocking extensions do not block all standards equally, with
WebSockets being blocked 65% of the times.

VI. DISCUSSION

The Good. Overall, our measurements demonstrate that the
WRB was not leveraged to circumvent blockers by the vast
majority of A&A companies. Although we find that ∼67%
of WebSockets on the open web are initiated or received by
A&A domains (see § IV-A), most of these companies have a
legitimate reason to be using WebSockets. For example, Dis-
qus, Zopim, Velaro, and Intercom all offer real-time services
that are ideal use-cases for WebSockets (see § IV-B).

The Strange. A troubling finding of our study is that
major ad and tracking platforms, like Google, Facebook,
AddThis, and AppNexus, adopted WebSockets (see Tables II
and IV). This is extremely concerning, since these companies
dominate the online display ad ecosystem and are essentially
omnipresent on the web. Yet strangely, we do not observe
these major ad platforms initiating WebSocket connections
after the release of Chrome 58 (when the WRB was patched,
see § IV-A). The observational nature of our study prevents
us of from drawing causal conclusions about this finding, and
indeed, it may be coincidental.

The Bad. Previous studies of online tracking have repeat-
edly identified “innovators” attempting to use bleeding-edge
techniques to gain an advantage against privacy-conscious
users. Examples include the use of persistent cookies and
various kinds of fingerprinting [24], [45], [5], [46], [32], [37],
[43], [35], [1], [25], [15], [14].

We identify three companies that appear to have been using
the WRB to circumvent blocking extensions: 33across was
harvesting large amounts of browser state that could be used
for fingerprinting; Lockerdome was downloading URLs to
ads (see § IV-C and Figure 6); and Hotjar was downloading
the entire DOM from webpages. These results highlight an
important facet of the WRB debacle: although users clamored
for a patch after observing ads slipping through blockers [21],
[42], our results demonstrate that invisible tracking was an
equally important and disturbing implication of the WRB.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful com-
ments. This research was supported in part by NSF grants
IIS-1408345 and IIS-1553088. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the NSF.

REFERENCES

[1] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Diaz. The
web never forgets: Persistent tracking mechanisms in the wild. In Proc. of CCS,
2014.

[2] WebSocket connections can’t be blocked. AdBlock Plus Issue Tracker, Dec. 2014.
https://issues.adblockplus.org/ticket/1727.

[3] Put the YourAdChoices Icon to Work for You. Digital Advertising Alliance, 2017.
http://youradchoices.com/learn.

[4] S. Arshad, A. Kharraz, and W. Robertson. Include me out: In-browser detection
of malicious third-party content inclusions. In Proc. of Intl. Conf. on Financial
Cryptography, 2016.

[5] M. Ayenson, D. J. Wambach, A. Soltani, N. Good, and C. J. Hoofnagle. Flash
cookies and privacy ii: Now with html5 and etag respawning. Available at SSRN
1898390, 2011.

6

https://issues.adblockplus.org/ticket/1727
http://youradchoices.com/learn

[6] P. Barford, I. Canadi, D. Krushevskaja, Q. Ma, and S. Muthukrishnan. Adscape:
Harvesting and analyzing online display ads. In Proc. of WWW, 2014.

[7] M. A. Bashir, S. Arshad, , W. Robertson, and C. Wilson. Tracing information
flows between ad exchanges using retargeted ads. In Proc. of USENIX Security
Symposium, 2016.

[8] M. A. Bashir, S. Arshad, and C. Wilson. “Recommended For You”: A First Look
at Content Recommendation Networks. In Proc. of IMC, 2016.

[9] A. Cahn, S. Alfeld, P. Barford, and S. Muthukrishnan. An empirical study of web
cookies. In Proc. of WWW, 2016.

[10] J. M. Carrascosa, J. Mikians, R. Cuevas, V. Erramilli, and N. Laoutaris. I always
feel like somebody’s watching me: Measuring online behavioural advertising. In
Proc. of ACM CoNEXT, 2015.

[11] Chrome devtools protocol viewer. GitHub. https://developer.chrome.com/devtools/
docs/debugger-protocol.

[12] S. Cowley and J. Pepitone. Google to pay record $22.5 million fine for Safari
privacy evasion. CNNMoney, Aug. 2012. http://money.cnn.com/2012/08/09/
technology/google-safari-settle/index.html.

[13] S. Englehardt. No boundaries: Exfiltration of personal data by session-
replay scripts. Nov. 2017. https://freedom-to-tinker.com/2017/11/15/
no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts.

[14] S. Englehardt and A. Narayanan. Online tracking: A 1-million-site measurement
and analysis. In Proc. of CCS, 2016.

[15] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer, A. Narayanan,
and E. W. Felten. Cookies that give you away: The surveillance implications of
web tracking. In Proc. of WWW, 2015.

[16] M. Falahrastegar, H. Haddadi, S. Uhlig, and R. Mortier. The rise of panopticons:
Examining region-specific third-party web tracking. In Proc of. Traffic Monitoring
and Analysis, 2014.

[17] M. Falahrastegar, H. Haddadi, S. Uhlig, and R. Mortier. Tracking personal
identifiers across the web. In Proc. of PAM, 2016.

[18] P. Gill, V. Erramilli, A. Chaintreau, B. Krishnamurthy, K. Papagiannaki, and
P. Rodriguez. Follow the money: Understanding economics of online aggregation
and advertising. In Proc. of IMC, 2013.

[19] S. Guha, B. Cheng, and P. Francis. Challenges in measuring online advertising
systems. In Proc. of IMC, 2010.

[20] R. Hill. A companion extension to uBlock Origin. GitHub. https://github.com/
gorhill/uBO-Extra.

[21] R. Hill. ws-gateway websocket circumvention ? #1936. GitHub, Aug. 2016. https:
//github.com/gorhill/uBlock/issues/1936.

[22] U. Iqbal, Z. Shafiq, and Z. Qian. The ad wars: Retrospective measurement and
analysis of anti-adblock filter lists. In Proc. of IMC, 2017.

[23] chrome.webRequest.onBeforeRequest doesn’t intercept WebSocket requests.
Chromium Bugs, May 2012. https://bugs.chromium.org/p/chromium/issues/detail?
id=129353.

[24] S. Kamkar. Evercookie - virtually irrevocable persistent cookies., September 2010.
http://samy.pl/evercookie/.

[25] T. Kohno, A. Broido, and K. Claffy. Remote physical device fingerprinting. IEEE
Transactions on Dependable and Secure Computing, 2(2):93–108, 2005.

[26] B. Krishnamurthy, D. Malandrino, and C. E. Wills. Measuring privacy loss and
the impact of privacy protection in web browsing. In Proc. of SOUPS, 2007.

[27] B. Krishnamurthy, K. Naryshkin, and C. Wills. Privacy diffusion on the web: A
longitudinal perspective. In Proc. of WWW, 2009.

[28] B. Krishnamurthy and C. Wills. Privacy leakage vs. protection measures: the
growing disconnect. In Proc. of W2SP, 2011.

[29] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and E. Kirda. Thou
Shalt Not Depend on Me: Analysing the Use of Outdated JavaScript Libraries on
the Web. In Proc of NDSS, 2017.

[30] M. Malloy, M. McNamara, A. Cahn, and P. Barford. Ad blockers: Global prevalence
and impact. In Proc. of IMC, 2016.

[31] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Neuner, M. Schmiedecker,
and E. R. Weippl. Block me if you can: A large-scale study of tracker-blocking
tools. In Proc. of Euro S&P, 2017.

[32] K. Mowery and H. Shacham. Pixel perfect: Fingerprinting canvas in html5. In
Proc. of W2SP, 2012.

[33] M. H. Mughees, Z. Qian, and Z. Shafiq. Detecting anti ad-blockers in the wild.
PoPETs, 2017(3):130, 2017.

[34] N. Nikiforakis, W. Joosen, and B. Livshits. Privaricator: Deceiving fingerprinters
with little white lies. In Proc. of WWW, 2015.

[35] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna.
Cookieless monster: Exploring the ecosystem of web-based device fingerprinting.
In Proc. of IEEE Symposium on Security and Privacy, 2013.

[36] R. Nithyanand, S. Khattak, M. Javed, N. Vallina-Rodriguez, M. Falahrastegar, J. E.
Powles, E. D. Cristofaro, H. Haddadi, and S. J. Murdoch. Adblocking and counter
blocking: A slice of the arms race. In Proc. of FOCI, 2016.

[37] L. Olejnik, C. Castelluccia, and A. Janc. Why Johnny Can’t Browse in Peace: On
the Uniqueness of Web Browsing History Patterns. In Proc. of HotPETs, 2012.

[38] L. Olejnik, T. Minh-Dung, and C. Castelluccia. Selling off privacy at auction. In
Proc of NDSS, 2014.

[39] F. Papaodyssefs, C. Iordanou, J. Blackburn, N. Laoutaris, and K. Papagiannaki.
Web identity translator: Behavioral advertising and identity privacy with wit. In
Proc. of HotNets, 2015.

[40] pkalinnikov. Issue 2449913002: Support websocket in webrequest api. (closed).
Chromium Code Reviews. https://codereview.chromium.org/2449913002/.

[41] E. Pujol, O. Hohlfeld, and A. Feldmann. Annoyed users: Ads and ad-block usage
in the wild. In Proc. of IMC, 2015.

[42] Technobuffalo.com. EasyList Forum, July 2016. https://forums.lanik.us/viewtopic.
php?p=110902.

[43] F. Roesner, T. Kohno, and D. Wetherall. Detecting and defending against third-party
tracking on the web. In Proc. of NSDI, 2012.

[44] P. Snyder, L. Ansari, C. Taylor, and C. Kanich. Browser feature usage on the
modern web. In Proc. of IMC, 2016.

[45] A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoofnagle. Flash cookies and
privacy. In AAAI Spring Symposium: Intelligent Information Privacy Management,
2010.

[46] O. Starov and N. Nikiforakis. Extended tracking powers: Measuring the privacy
diffusion enabled by browser extensions. In Proc. of WWW, 2017.

[47] N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunenberger, K. Papagiannaki,
H. Haddadi, and J. Crowcroft. Breaking for commercials: Characterizing mobile
advertising. In Proc. of IMC, 2012.

[48] S. J. Vaughan-Nichols. Chrome is the most popular web
browser of all. ZDNet, Jan. 2017. http://www.zdnet.com/article/
chrome-is-the-most-popular-web-browser-of-all/.

[49] A. Zarras, A. Kapravelos, G. Stringhini, T. Holz, C. Kruegel, and G. Vigna. The
dark alleys of madison avenue: Understanding malicious advertisements. In Proc.
of IMC, 2014.

7

https://developer.chrome.com/devtools/docs/debugger-protocol
https://developer.chrome.com/devtools/docs/debugger-protocol
http://money.cnn.com/2012/08/09/technology/google-safari-settle/index.html
http://money.cnn.com/2012/08/09/technology/google-safari-settle/index.html
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts
https://github.com/gorhill/uBO-Extra
https://github.com/gorhill/uBO-Extra
https://github.com/gorhill/uBlock/issues/1936
https://github.com/gorhill/uBlock/issues/1936
https://bugs.chromium.org/p/chromium/issues/detail?id=129353
https://bugs.chromium.org/p/chromium/issues/detail?id=129353
http://samy.pl/evercookie/
https://codereview.chromium.org/2449913002/
https://forums.lanik.us/viewtopic.php?p=110902
https://forums.lanik.us/viewtopic.php?p=110902
http://www.zdnet.com/article/chrome-is-the-most-popular-web-browser-of-all/
http://www.zdnet.com/article/chrome-is-the-most-popular-web-browser-of-all/

	I Introduction
	II Background
	II-A WebSockets
	II-B webRequest API
	II-C The Rise and Fall of a Bug

	III Methodology
	III-A Inclusion Tree
	III-B WebSocket Detection and Labeling
	III-C Data Collection

	IV Analysis
	IV-A Overall WebSocket Usage
	IV-B Initiators and Receivers
	IV-C Content Analysis

	V Related Work
	VI Discussion
	References

