
Preserving Privacy in Collaborative Business Process Composition

Hassaan Irshad1, Basit Shafiq1, Jaideep Vaidya2, Muhammad Ahmed Bashir1, Shafay Shamail1, and
Nabil Adam3

1Department of Computer Science, Lahore University of Management Sciences, Lahore, Pakistan
2Management Science and Information Systems Department, Rutgers University, Newark, New Jersey, USA

3Rutgers Institute for Data Science, Learning, and Applications, Rutgers University, Newark, New Jersey, USA
{hassaan.irshad, basit, sshamail}@lums.edu.pk, {jsvaidya,adam}@andromeda.rutgers.edu

Keywords: Business Process Composition, Privacy

Abstract: Collaborative business process composition exploits the knowledge of existing business processes of related
organizations to compose an executable business process for a given organization based on its requirements and
design specifications. Typically, this requires organizations to share and upload their existing business process
execution sequences to a central repository. However, even after masking of confidential data, the execution
sequences may still include sensitive business information which organizations may not want to share with
their competitors. To address this issue, we develop a privacy-preserving Business Process Recommendation
and Composition System (BPRCS), that generates a differentially private dataset of execution sequences which
can be published and shared with other organizations for composition and implementation of their business
processes. We also employ process mining and classification techniques on this differentially private dataset
to regenerate the executable business process workflow. We experimentally validate the effectiveness of our
approach.

1 INTRODUCTION
Service oriented approach has enabled develop-

ment of new business processes as well as expansion
of existing processes with value added services. For
composition of such processes an organization does
not need to rely on its own resources for software cod-
ing and computing infrastructure for realization and
execution of the underlying business process tasks
(Moser et al., 2008; Baresi and Guinea, 2011; Pali-
wal et al., 2012; Chun et al., 2005). Rather, the indi-
vidual tasks of the business process are performed by
invoking Web services offered by third parties. Es-
pecially in the e-commerce and financial domains,
there are numerous third party Web services cover-
ing every major functional aspect such as invoicing
and billing, taxation and costing, accounting, pay-
ment processing, shipment, and so on (Turban et al.,
2009). The increased availability of such Web ser-
vices has opened new opportunities for organizations
for rapid and cost-effective development of their busi-
ness processes even if they lack the capability to per-
form all of the tasks required for the business pro-
cesses.

As an example, consider a business process for In-
ternet orders processing by an online store. This is

a complex process involving several tasks and each
task itself can be a multi-step workflow as shown in
Figure 1. However, all these tasks can be executed
by utilizing existing third party Web services. As-
suming that the business process workflow is known
and all the relevant Web services have been selected
a priori then the process can be invoked and executed
anytime. However, coming up with the implementa-
tion level business process workflow design so that
each task can be mapped to an individual Web ser-
vice as well as selection of third party web services
for such tasks, poses significant challenges (Paliwal
et al., 2012). Typically, business process development
involves working with a high-level process specifi-
cation and manually elaborating the high-level spec-
ifications into implementation level design (Dengler
et al., 2011; Chun et al., 2002b). After this, partner
Web services are selected and a binding is established
between the workflow tasks and the selected partner
Web services to generate the executable business pro-
cess (e.g., BPEL process (Evdemon et al., 2007)).

Such business process development can be done
collaboratively by exploiting the knowledge of the ex-
isting business processes of related organizations to
compose an executable business process of a given or-

Receive

Order

Sales Tax

Computation

Service

Excise & Custom

Duty Computation

Service

Shipment

Computation

Service

Compute item price including taxes

Send Invoice &

Receive Payment

Credit Card

Processing

Service

Internet Check

Processing

Service

Paypal

Processing

Service

Invoice

Creation

Service

Custom/excise

Duty Payment

Service

Accounting Service

for tax Filing

Shipment

Service

Billing

Service

Payment processing

Local

customer

International

customer

International

customer
Local

customerSend Final bill

and shipping

information to

customer

Figure 1: Example of a business process for handling Internet purchase orders

ganization based on its requirements and design spec-
ifications. However, this requires a repository of ex-
isting business processes that includes different types
of business processes such as supply chain manage-
ment, Internet purchase orders, accounting and tax-
ation. For each type, the repository has to include
the history of the business process invocations by dif-
ferent organizations in form of execution sequences
(e.g., order in which the activities were performed
and the corresponding Web services invoked). Given
such a repository, we can learn the common execu-
tion patterns for different types of processes and use
the learned patterns for composing a given type of
business process for an organization (Bentounsi et al.,
2012a; Bentounsi et al., 2012b).

For illustration, suppose that a garment store
wants to develop a business process for handling In-
ternet purchase orders. The store owner specifies the
following requirements in the process design specifi-
cation:

1) Orders need to be handled for both local and
international customers.

2) For international orders the excise and custom
duty must be charged from the customer in the pay-
ment amount and paid to the appropriate authority.

3) Each transaction needs to be recorded in the
accounting system for filing of the sales and income
tax returns.

Based on the given requirements, the process
repository is searched to retrieve the set of execution
sequences that process either local orders or Interna-
tional orders with customs and excise duty payment.
This set of execution sequences can be used to de-
termine: i) relevant activities in the Internet purchase

order business process; ii) controlflow and dataflow
between the activities; iii) third party web services
that can perform the different activities in the business
process; and iv) trustworthiness of such third party
Web services based on their invocation frequency.
Given this information, an executable business pro-
cess can be composed and deployed. For example, we
can employ process mining on the sequence dataset
to regenerate the BP workflow (van der Aalst et al.,
2010).

However, creating such a repository typically re-
quires sharing sensitive information. Essentially, or-
ganizations with existing business processes, have to
share and upload their process execution sequences to
the central repository. The execution sequences (even
after masking of the data values such as credit card in-
formation, social security number, etc.) include sen-
sitive business information which organizations may
not want to share (Kerschbaum and Deitos, 2008;
Bentounsi et al., 2012a; Bentounsi et al., 2012b). For
instance an organization may not want its competi-
tors to learn: how many times the organization selects
a given third party Web service as opposed to another
service with the same functionality? How many times
a business process failed for the organization because
the requested item was not in the inventory? What is
the turn-around time from order receipt to shipment?

To address this problem, we develop a privacy-
preserving Business Process Recommendation and
Composition System (BPRCS), that generates a dif-
ferentially private dataset of execution sequences
which can be published and shared with other organi-
zations for composition and implementation of their
business processes. We employ process mining and

classification on the differentially private sequence
dataset to regenerate the BP workflow. From this BP
workflow, we can generate the executable BP code in
BPEL.

As such, this paper examines the problem of how
privacy can be preserved if an executable business
process has to be composed based on the knowledge
of existing business processes. This is an important
problem since there is a lot of benefit in creating busi-
ness processes that utilize the available web services.
We do this by employing the notion of differential pri-
vacy to protect the confidentiality of information con-
tributed by each organization. Our key contribution
is to exploit the sequential composition property of
differential private computations by modeling the ex-
ecution sequences as a graph and performing random
walk on this graph to regenerate comparable execu-
tion sequences that cannot be linked to a contributing
organization.

The rest of the paper is structured as follows.
The collaborative environment for business processes
composition is discussed in Section 2. We present the
privacy model in Section 3 and describe the proposed
approach in Section 4. In Section 5, we analyze the
privacy and computation complexity of the proposed
approach. We present the results of the experimen-
tal evaluation in Section 6. In Section 7, we discuss
related work and conclude the paper in Section 8.

2 ENVIRONMENT
Figure 2 shows the environment for business pro-

cess recommendation and composition. BPRCS is a
trusted party in the cloud that provides support for
collaborative composition of executable business pro-
cesses in a privacy-preserving manner. Organiza-
tions from different domains register with BPRCS
and publish their business process details (BP exe-
cution sequences) which are stored in a repository
after anonymization using the proposed differential
privacy-based approach. The dataset in this repository
can be made publicly available as the anonymization
ensures that no business secret and private informa-
tion can be learned from the anonymized BP execu-
tion sequences. BPRCS also maintains a registry of
third party Web services and based on the informa-
tion derived from the BP execution sequences in the
repository it computes trustworthiness and other qual-
ity of service values for each Web service.

The users subscribe to BPRCS for using its ser-
vices to query the repository for retrieving relevant
business process sequences. The user may perform
process mining on the retrieved sequences to learn
the relevant activity patterns and compose the activ-

ity patterns into a business process based on the given
requirements. Alternatively, the user may provide
his/her requirements and high level process design to
BPRCS which also includes a business process min-
ing component for composition of a business process
in an interactive manner. Inputs to the business pro-
cessing mining component include the BP execution
sequences from the repository as well as the avail-
able web services as shown in Figure 2. Using these
inputs, the business process mining component gen-
erates the business process workflow with mapping
of the activities to the available Web services. The
user can modify the generated business process work-
flow using the process refinement interface. The pro-
cess refinements may include changing the activity to
Web service mapping or modifying the structure of
the generated BP workflow. Given the business pro-
cess workflow design and the activity to Web service
mapping, an executable BPEL process can be easily
generated and deployed on the server either at the user
site or on the cloud.

One question that might occur is why would orga-
nizations participate in the BPRCS system. Basically,
given an assurance of privacy, there are several incen-
tives for these organizations to share their data in this
collaborative environment, as discussed below:
1. Organizations can use the BPRCS for composing

new business processes.

2. Refinement/extension of existing processes – An
organization can compare its business process
with comparable processes from other organiza-
tions to check for inconsistency/redundancy or
identify any extension that may add more value
to the process.

3. The proposed BPRCS system is also suitable for
less open collaborative environments (e.g., digi-
tal government, single large organization) that re-
quire a pre-established level of trust before using
third party Web services or ownership of such ser-
vices (Chun et al., 2002a). In such environments,
the organizations may be trustworthy; however,
they may have similar privacy concerns for shar-
ing their sensitive business process data. Also
in such environments (e.g., digital government),
there is typically a large number of trusted or co-
owned Web services that could be used in com-
position of new business processes by other or-
ganizations. For example a property tax assess-
ment Web service provided by County treasurer
department can be used by the business registra-
tion department of the city. In this case, both the
subscriber and user organizations are trustworthy
and use BPRCS for composition of new business
processes.

Organizations

Business Process

Recommendation

and Composition

System

Privacy aware

process data

sanitization

Differentially

private BP

execution

sequence

dataset

Query

Interface

Business

process mining

User interface

for process

refinement

Executable

process (BPEL)

generation

3rd party WEb

service Registry

BPEL

deployment &

hosting

Users

Require

ments

Figure 2: Collaborative environment for business process composition

3 PRIVACY MODEL

We first formally define business process execu-
tion sequences and then present the privacy model.

3.1 BP Execution Sequence

Generally, a business process is not designed for one
time use only. Users execute their business processes
repeatedly and each execution of the business process
may be different from a prior execution of the same
process. We define an execution sequence of a busi-
ness process as the ordered list of activities (along
with their input/output parameters) that are executed
in any given execution of the business process. The
activities in an execution sequence are ordered based
on their invocation time. Based on BPEL formal-
ism(Evdemon et al., 2007), an activity can be an in-
voke activity (invoking a Web service), receive activ-
ity (receiving input from a user), reply activity (send-
ing a reply to the user), and assignment activity (for
variable/value assignment). Since receive, reply, and
assignment activities are primarily used to capture the
data flow between Web services (invoke activities),
we do not consider these activities in an execution se-
quence and define an execution sequence with respect
to the Web services invoked. The data flow is captured
by annotating each Web service with its input and out-
put parameters in the given execution sequence. We

represent the Web service invocation by the tuple

WS = (WSid , input List,out put List)

where WSid corresponds to the unique iden-
tifier of the Web service being invoked.
input list = {(input parameter,value)} and
out put List = {(out put parameter, value)}. Note
that a given web service may provide multiple
operations and in the BP execution sequence we
need to capture which specific operation of the web
service was invoked. However, for simplicity of
discussion we assume that each Web service provides
only one operation. In case a Web service provides
multiple operations, we assign a unique WSid to each
combination of the Web service and its operation.
Definition 1 (BP Execution Sequence (ES)). A BP
execution sequence is a list of WS tuples ordered by
their invocation time in the given business process ex-
ecution.

Table 1 shows a sample of BP execution se-
quences database including four sequences related to
the Internet purchase order of Figure 1. The Web ser-
vice invocation tuples in the sequence are separated
by→. The sensitive information in the input list and
output list is masked by the organization sharing its
sequence data. Only those input and output parame-
ter values are disclosed which are not considered sen-
sitive. For example, in the GetOrderFromAmazon
Web service in sequence 1 (Table 1), all the input pa-
rameter values including customer name and address

are masked. Similarly, all the input and output pa-
rameter values in the Web service tuple EasyBill are
masked to protect leakage of sensitive information.

3.2 Differential Privacy

Differential Privacy (Dwork, 2006; Dwork et al.,
2006) is a well accepted privacy model that provides a
formal and quantifiable privacy guarantee irrespective
of an adversary’s background knowledge and avail-
able computational power. A randomized algorithm is
considered to be differentially private if for any pair of
neighboring inputs, the probability of generating the
same output, is within a small multiple of each other,
for the entire output space (Dwork, 2006). Thus, for
any two datasets which are close to one another, a
differentially private algorithm will behave approxi-
mately the same on both data sets.

Definition 2 (ε-Differential Privacy). A randomiza-
tion algorithm A satisfies ε-differential privacy if for
any two neighboring datasets D1 and D2 (differing
in one element), and all R ⊆ Range(A), we have
e−ε ≤ Pr[A(D1)∈R]

Pr[A(D2)∈R] ≤ eε.

A standard mechanism to achieve differential pri-
vacy is based on the addition of appropriately param-
eterized Laplacian noise. For this, we need to define
the sensitivity of the function to be computed.

Definition 3 (Sensitivity). For any query function q
over the input datasets, the sensitivity of q is ∆q =
max||q(D1)− q(D2)|| for any neighboring datasets
D1 and D2.

Queries with lower sensitivity can better tolerate
the data modifications from added noise. The work
in (Dwork et al., 2006) shows that to release a (per-
turbed) value q(x) while satisfying privacy, it suffices
to add Laplace noise with standard deviation ∆q/ε.
More specifically, for any given query function q, the
mechanism A :

A(D) = q(D)+Laplace(∆q/ε)

gives ε-differential privacy. Note that the above pri-
vacy guarantee requires that all the tuples in the
dataset are independent (Kifer and Machanavajjhala,
2011), and may not hold if this is not true.

3.3 Privacy Requirement
Given a BP execution sequence database D and any
BP execution sequence ES ∈ D, we do not want an
adversary to learn if ES is the execution sequence
of an organization Orgx. Thus, in terms of differ-
ential privacy, any two execution sequence databases
D1 and D2 differing only on the inclusion of ES (i.e.,

D1 includes ES and D2 does not include ES), an ε-
differentially private algorithm A satisfies:

Pr[A(D1) ∈ R] = eεPr[A(D2) ∈ R]
Where R ⊆ Range(A). As stated in Section 3.2,

this privacy guarantee is based on the assumption that
all the execution sequences in the datasets D1 and D2
are independent. This assumption would definitely
be valid if each organization contributes at most one
execution sequence to the database. In case an or-
ganization (Orgx) contribute m sequences to the exe-
cution sequence database, then the adversary’s prob-
ability estimate that a given execution sequence be-
longs to Orgx can change by at most emε (Kifer and
Machanavajjhala, 2011). Note that this will only be
true if the execution sequences are all based on the
same underlying business process. In any case, to
avoid even the potential of such disclosure, we re-
strict the number of execution sequences contributed
by each organization to 3.

4 PROPOSED APPROACH
We first discuss how the differentially privacy

repository of BP execution sequences is generated
and then describe process mining for BP workflow
creation.

4.1 Differentially Private BP Execution
Sequences

We model the BP execution sequence database as a
graph G = (V,E). A node in the graph represents a
Web service and an edge represents ordering relation-
ship between invocation of two web services in some
execution sequence. We formally define the execution
sequence graph below:

Definition 4 (BP Execution Sequence Graph). A
BP execution sequence graph G = (V,E) is a com-
pact representation of the BP execution sequence
database.

• Each node in V corresponds to a Web service.
• An edge (WSi,WS j) ∈ E denotes that in some

business process execution, the Web service WSi
was invoked first followed by the Web service
WS j.
• c : E → Z+ is a count function. c(WSi,WS j) de-

notes how many times WS j was invoked after in-
vocation of WSi.
• distip : E→X. For an edge e : (WSi,WS j), X is a

vector of distributions of all the input parameter
values of WS j given that WS j is invoked immedi-
ately after WSi. If WS j has n input parameters
then X includes n distributions.

No. BP Execution Sequence
1 (GetOrderFromAmazon,{ }, {(Item,LevisJeans), (Qty,1) (BuyerLoc,LA)}) →

(SalesTaxSVCA,{(Item,LevisJeans), (Qty,1), (Price,50) (BuyerLoc,LA)},{(Tax,4)}) →
(TransShip,{(wt,0.5), (Origin,NYC), (Dest,LA) (Type,Std)},{(Charge,5)}) → (PayPal,
{(Amount,59)},{(Result,OK) })→ (EasyBill, { },{ })

2 (GetOrderFromAmazon,{ }, {(Item,LevisJeans), (Qty,1) (BuyerLoc,London)}) →
(SalesTaxSVCA,{(Item,LevisJeans), (Qty,1), (Price,50) (BuyerLoc,London)},{(Tax,4)})
→ (UKCustoms,{(ItemType,Clothes), (Qty,1), (Price,54),(BuyerLoc,London},{(Duty,2)}))
→ (TransShip,{(wt,0.5), (Origin,NYC), (Dest,LA) (Type,Std)},{(Charge,5)}) → (PayPal,
{(Amount,61)},{(Result,OK) })→ (UKDutyPymt, {(Amount,2)},{(Result,OK) }) (EasyBill,
{ },{ })

3 (GetOrderFromEbay,{ }, {(Item,PoloShirt), (Qty,1) (BuyerLoc,Chicago)})
(EasySalesTax,{(Item,PoloShirt), (Qty,1), (Price,60) (BuyerLoc,Chicago)},{(Tax,5)}) →
(USPS,{(wt,0.5), (Origin,NYC), (Dest,Chicago) (Type,Urgent)},{(Charge,10)}) → (PayPal,
{(Amount,75)},{(Result,OK) })→ (EasyBill, { },{ })

4 (GetOrderFromAmazon,{ }, {(Item,LevisJeans), (Qty,2) (BuyerLoc,Paris)}) →
(SalesTaxSVCA,{(Item,LevisJeans), (Qty,2), (Price,100) (BuyerLoc,Paris)},{(Tax,8)})
→ (EuroCustoms,{(ItemType,Clothes), (Qty,1), (Price,54),(BuyerLoc,Paris)},{(Duty,2)})
→ (TransShip,{(wt,1), (Origin,NYC), (Dest,LA) (Type,Std)},{(Charge,10)}) → (PayPal,
{(Amount,120)},{(Result,OK) }) → (EuroDutyPymt, {(Amount,2)},{(Result,OK) })
(EasyBill, { },{ })

Table 1: Sample BP execution sequence database

• distop : E→Y. For an edge e : (WSi,WS j), Y is a
vector of distributions of all the output parameter
values of WSi given that WS j is invoked immedi-
ately after WSi. If WSi has n output parameters
then Y includes n distributions.
• slen : V → 2Z

+×Z+
. For a node v, slen(v) =

{(length,count)}. slen(v) returns the length of
all execution sequences that originate from v.
count denotes the number of occurrences of the
sequence.

In the execution sequence graph, the functions
distip and distop keep track of the distribution of the
input and output parameter values of the Web services
against each edge. This distribution of parameter val-
ues would be needed in the process mining phase to
identify any conditional branches when composing
the business process.

Figure 3 shows the graph of based representation
of the sample BP execution sequence database of Ta-
ble 1. This graph has 11 nodes corresponding to each
Web service in the sample database. The edges in the
graph are labeled with the count value given by the
function c(). For example, c(v1,v3) = 3 indicating
that there are three sequences in which the Web ser-
vice SalesTaxSVCA was invoked after the GetOrder-
FromAmazon Web service. The input parameters
value distribution for the edge (v1,v2) is also shown in
Figure 3. The distribution indicates that amongst the
corresponding sequences, the service SalesTaxSVCA
was invoked 3 times when the item was LevisJeans
and quantity was in the range [1-2]. Also, in these
three invocations the price was in the range [50-80]
twice and in the range [80-100] once. As discussed in

��������

���	
��

��������

���	�	���� v
1

v
2

�������

���

��������

����
v

3
v

4

����

�����	�

���

�����	� v
6

v
7

����������

����
v

5
v

8

����� v
9

����

 ���	�

v
10

��!���v
11

����� �����

�����
�����

�����

�����
�����

�����

�����

�����

�����

�����

�����

�	
������

�������������

�	
������

�������

������ ��� �	

���� ������������ ��

��� ������� ��

� �!� � "#�$# � ��� $#��## � ��

%	

Figure 3: Graph based representation of the sample BP ex-
ecution sequence database of Table 1

Section 3.2, the values of sensitive parameters in the
execution sequences would be masked by the orga-
nizations for privacy concerns. Therefore, the value
distributions of those parameters are not included in
distip and distop. The starting nodes in the sample
database are v1 corresponding to GetOrderFromA-
mazon and v2 corresponding to GetOrderFromE-
bay. slen(v1) = (5,1),(7,2) indicating that there is
one sequence of length 5 and two sequences of length
7 that originate from v1. For all nodes other than v1
and v2 slen() is an empty set.

Algorithm 1 Generate differentially private BP exe-
cution sequences

Require: BP execution sequence database D =
{ES1,ES2, . . . ,ESN}

Require: Privacy measure ε
Ensure: ε-Differentially private BP execution se-

quence database D̃
1: D̃← ϕ
2: From the given database D, generate the execu-

tion sequence graph G = (V,E)
3: For each edge e ∈ E, label e with c(e), distip(e),

and distop(e).
4: For each node v ∈V , label v with slen(v)
5: k← max({length(ES1), . . . length(ESN)})
6: for each e ∈ E do
7: c(e) ← c(e) + Laplace(ε/k) {Add Laplacian

noise to the edge count}
8: end for
9: Based on the modified count value for an edge

e = (WSi,WS j), compute the probability of tak-
ing that edge, i.e., the probability of invoking ser-
vice WS j immediately after invocation of WSi

10: for each v ∈V do
11: for each t ∈ slen(v) do
12: for i = 1 to t.count do
13: Generate ẼS by doing a random walk of

t.length steps starting from node v us-
ing the probability values of correspond-
ing edges computed in line 9

14: D̃← D̃∪ ẼS (this is a multiset union)
15: end for
16: end for
17: end for
18: return D̃

We use the BP execution sequence graph to gen-
erate the differentially private database of execution
sequences. The basic idea is to add Laplacian noise
with appropriate ε value to the count value of each
edge. Based on the edge count values, we compute
the probability of taking an edge from a given node.
For example in Figure 3 there are three edges originat-
ing from node v3: (v3,v5), (v3,v6), and (v3,v7). Each
has a count value of 1, so the probability of each edge
is 1/3. Given the edge traversal probabilities, we can
do a random walk from the starting nodes to regener-
ate the BP execution sequences. The length and the
number of such execution sequences from any given
starting node v is given by the slen(v)

Algorithm 1 shows the pseudo code for genera-
tion of differentially private BP execution sequence
database. The input to this algorithm is the origi-
nal sequence database and the privacy budget ε. The

output database generated by the algorithm ensures
ε-differential privacy. Algorithm 1 first generates the
BP execution sequence graph from the given database
(lines 1-4). Then noise derived from Laplace distri-
bution with 0-mean and λ = ε/k is added to the count
value for each edge (lines 6-8). k is the length of the
longest sequence in the database D. The steps for re-
generation of BP execution sequences by doing ran-
dom walk from the start nodes are shown in lines 10-
17.

4.2 Process mining and BP workflow
generation

Once the differentially private BP sequence database
is generated, it can be queried to retrieve relevant se-
quences based on user requirements as depicted in
Figure 2. From the retrieved BP sequences, we need
to generate the BP workflow structure including the
control flow and data flow. In addition the activities
in the BP workflow need to be mapped to appropriate
Web services.

There are several process mining tools available
for discovering workflow models from event logs
(van der Aalst et al., 2010; Van der Aalst et al., Sept;
Silva et al., 2005; Wen et al., 2009). We use the pro-
cess mining tool ProM (van der Aalst et al., 2010) to
create this basic workflow structure from the given BP
execution sequences. From this basic workflow struc-
ture, we identify all the branching points. There may
exist a strong correlation between the values of some
of the input/output parameters and the branch taken
during business process execution. For example, with
reference to the Internet purchase order example de-
picted in Figure 1, if the order is made by an interna-
tional customer, the business process branches to the
excise and custom duty computation service. On the
other hand, if the order is made by a local customer
the business process execution takes the first branch.
For each branching point, we build a decision tree-
based classification model to discover the branch-
ing conditions. The differentially private execution
dataset (used for generation of the basic workflow)
serves as a training dataset for classification models
generation. Essentially, each BP execution sequence
in this dataset corresponds to an instance with relevant
data and parameter values for building the classifica-
tion model. The rules generated by the classification
model corresponds to the branching conditions and
are annotated on the corresponding branching path.

Note that given the workflow structure including
the controlflow, dataflow, activities to Web services
mapping and branching condition, we can create the
executable BPEL process that can then be deployed.

5 ANALYSIS

Privacy analysis. As discussed in Section 3.3, the
differential privacy guarantee requires that there must
not be any correlation between multiple sequences
submitted by the same organization that enables one
to link such sequences to that organization. In case an
organization (Orgx) contribute m sequences to the ex-
ecution sequence database, then the adversary’s prob-
ability estimate that a given execution sequence be-
longs to Orgx can change by a factor of emε (Kifer
and Machanavajjhala, 2011).

In our experiments, we limit the maximum num-
ber of execution sequences contributed by any organi-
zation to 3 (i.e., m≤ 3). Also, when considering mul-
tiple BP execution sequences from a single organiza-
tion, we ensure that such sequences do not overlap
or the overlap is frequent across multiple organiza-
tions such that the information about the overlapping
sequences does not significantly increases the proba-
bility of linking the overlapping sequences to specific
organizations.

Below, we discuss the privacy analysis with re-
spect to generation of differentially private BP exe-
cution sequence database (Algorithm 1). The pro-
cess mining step operates on this differentially-private
database and therefore does not affect privacy.

To satisfy the differential privacy requirement, we
add Laplace noise to the edge count values in Algo-
rithm 1. The standard deviation λ of Laplace noise
depends on two parameters sensitivity and the privacy
budget ε.

Sensitivity ∆q. The count value for an edge (v1,v2)
basically gives the number of BP execution sequences
in which Web service v2 was invoked immediately af-
ter v1. Given that the neighboring database for dif-
ferential privacy differ in one record, the sensitivity
value for count queries is 1 (McSherry, 2009).

Privacy budget. Algorithm 1 regenerates the BP
execution sequences by doing random walk up to
some given length. In the random walk, basically
we are composing the sequence of computations that
each provide differential privacy in isolation. Here,
the computations are the count queries on the edges.
Assuming that a computation Ci provides εi differ-
ential privacy, then by the sequential composition
theorem in (McSherry, 2009), the sequence of com-
putations Ci(D) provides (Σiεi)-differential privacy.
To ensure mε differential privacy for the released
database D̃, we consider a privacy budget of mε/k
when adding noise to count value to edges, where k
is the maximum length of any execution sequence in
the original database D and m is the maximum num-
ber of execution sequences contributed by any orga-

nization. Since, we can have at most k steps in the
random walk for creating any execution sequence and
Σk

i=1(mε/k) = mε, therefore our algorithm provides at
least mε-differential privacy.

Computation complexity. We first discuss the
complexity of Algorithm 1. Lines (1-4) of Algorithm
1 generate the execution sequence graph G = (V,E).
The total number of nodes (|V |) in G is equal to
the total number of web services in the BP sequence
Database D and the number of edges can be at most
|V |2. Therefore, the size of G is O(|D|). In lines (6-
8) Laplace noise is added to each edge, therefore, the
complexity of this step is O(|E|). In the BP execution
sequence regeneration step, we do a random walk as
many times as the number of sequences in D. In each
random walk, at most k nodes are visited, where k is
the length of the longest sequence in D. Therefore,
the runtime complexity of the sequence regeneration
step is O(k|D|). Hence, the overall complexity of Al-
gorithm 1 is O(k|D|+ |E|) = O(k|D|).

The computation complexity for workflow gener-
ation from the BP execution sequences depends on the
complexity of the process mining and classification
model generation. We use ProM tool that incorpo-
rates α-algorithm for process mining (Van der Aalst
et al., Sept). The complexity of α-algorithm is lin-
ear in the number of sequences and exponential in the
number of tasks/activities in the workflow (Van der
Aalst et al., Sept). The number of tasks/activities in
a workflow does not depend on the size of the BP se-
quence dataset and is typically less than 100. There-
fore, complexity is not a major issue for process min-
ing. The classification model is built at each branch-
ing point to identify the branching conditions. The
computation complexity of building the classifier de-
pends on the particular classification model used. For
example the cost of building an ID3 decision tree clas-
sifier is O(|D||A||N|), where, |D| is the number of se-
quences, |A| is the number of attributes, and |N| is the
number of non-leaf nodes in the decision tree built
(Quinlan, 1986).

6 EXPERIMENTAL EVALUATION
In this section, we evaluate the utility of the pro-

posed approach in terms of the semantic correctness
of the BP workflow generated from the differentially-
private dataset. We refer to the BP workflow gener-
ated from the differentially-private dataset as output
BP workflow. We measure the semantic correctness
of the output BP workflow with respect to the follow-
ing requirements:

1. Completion of the output BP workflow. This
requirement entails that the output BP workflow

terminates in the correct state. We measure the
utility with respect to this requirement by com-
puting the degree of overlap between the set of
terminating states of the output BP workflow and
original BPs (from which the BP sequence dataset
is generated).

2. Dependency preservation in the output BP
workflow. Ensuring that the output BP work-
flow terminates in the correct state is not suf-
ficient to verify its correctness. We also need
to make sure that in any possible execution of
the output BP workflow, the ordering and depen-
dence relationship between the different activities
are maintained with respect to the original BPs.
Since there is a large number of original BPs (over
1000), we cannot perform structural comparison
between the set of original BPs and the output
BP workflow. Rather, we compare the overlap be-
tween the frequent sequential patterns of originals
BPs and the frequent sequential patterns in the
sanitized (differentially private) sequence dataset.

6.1 Dataset description

For experimental evaluation, the dataset includes ex-
ecution sequences selected from BPs related to In-
ternet purchase orders. Since our experiments in-
volved over a thousand BPs, we could not get these
many real-world BPs. To address this issue, we first
identified a large set of Web services and their cate-
gories related to Internet purchase orders in different
businesses (e.g., garments/apparel, electronics). Then
we identified the ordering and dependence relation-
ships (e.g., shipment Web service is called after pay-
ment processing web service) and mutual exclusion
constraints (e.g., Payment can be made using either
Paypal or credit card Web service but not both) be-
tween the different Web service categories. These
relationships and constraints were modeled in a de-
pendency graph in which the nodes represent Web
service categories. We consider two types of edges:
i) dependence edge defining the dependence relation-
ship between the Web service categories; and ii) con-
straint edges defining the mutual exclusion constraint
between the Web service categories. From this de-
pendency graph, we generated the required number
of BPs by considering different combinations of al-
ternate paths to terminal nodes as well as consider-
ing different parallel structures for independent nodes
(i.e., Web services that do not have any dependence
relationship). Figure 4 depicts the dependency graph
of the Internet purchase order.

Figure 4: Dependency graph of Internet Purchase Order
process

6.2 Results

In the following discussion, D denotes the database
of the original execution sequences generated from
all the BPs of a dependency graph. DS denotes the
database of the BP sequences used for sanitization
DS ⊆ D. Each BP contributes a small number (1 –
3) of execution sequences in DS for privacy reasons
discussed above. D̃ denotes the sanitized database af-
ter applying Algorithm 1 on DS.

6.2.1 Completion of the output BP workflow.

For this requirement, we measure the degree of over-
lap between the set of terminating states of the out-
put BP workflow and original BPs (from which the
BP sequence dataset is generated). Specifically, we
measure the accuracy of the set of terminating states
in the original BP workflow (denoted by T) and the
set of terminating states (denoted by T̃) in the output
BP workflow in terms of precision and recall. These
values were averaged over four runs. T̃ is obtained
from the output BP workflow structure returned after

Precision (Percent) Recall (Percent)
ε̃ 200 BPs 500 BPs 1000 BPs 2000 BPs 200 BPs 500 BPs 1000 BPs 2000 BPs

0.02 100 100 100 100 60 60 60 60
0.01 100 100 100 100 40 60 60 60

0.005 100 100 100 100 40 40 60 60
0.002 100 100 100 100 40 60 60 60

Table 2: Precision and recall of terminating states with varying ε̃ and number of BPs related to Internet purchase order dataset.

performing process mining on the sanitized execution
sequence dataset.

Table 2 shows precision and recall values of ter-
minating states with varying ε̃ (Note that ε̃ = ε/k and
for the Internet Purchase Order BPs k ≤ 16. Thus ε̃
represents the privacy budget for reconstructing each
step of the business process execution sequence.) For
this experiment, we considered different numbers of
BPs (200, 500, 1000, and 2000). These BPs were
generated from the Internet Purchase Order depen-
dency graph. From each BP, we selected 3 execution
sequences and sanitized the resulting database of se-
lected execution sequences.

As shown in Table 2, Precision is 100% for the
Internet purchase order dataset. Recall improves as
number of BPs are increased for generation of the
output BP workflow. Also, recall improves as we de-
crease the noise (i.e., increase ε̃)

6.2.2 Dependency preservation in the output BP
workflow.

We compute the overlap between the frequent sequen-
tial patterns in D and D̃ in terms of precision and
recall. For measuring recall, we considered exact
matching of patterns between D and D̃. For measur-
ing precision, we consider two patterns pi and p j to
be matching if they differ by at most one element and
the order of elements is preserved. This approximate
matching (for precision) makes sense since business
process composition is an interactive process. The
user will take the output of the system and refine it
based on his/her requirements.

Precision and recall of frequent sequential pat-
terns w.r.t. ε. Figure 5 (a) and (b) shows the graph of
precision and recall values measured against different
ε̃ for the Internet Purchase Order BPs. The precision
and recall values in Figure 5 are computed by taking
the average of precision and recall values of the fre-
quent patterns with length between 5 and 10 in Figure
5, the number of input BPs is 1000. From each of
the input BP, we randomly selected 1 execution se-
quence for generation of the output BP workflow. We
first ran the frequent sequential pattern analysis on the
original database D with a minimum support thresh-
old of 10% for all patterns of length between 5 and 10.

�

��

��

��

��

��

��

��

	�

�

���

� ����� ���� ����� ���� �����
�
�
��
��
�
�
��
�
�

���

������������ ��

������������ ��

������������ ���

(a) ε̃ vs. precision

�

��

��

��

��

��

��

��

	�

�

���

� ����� ���� ����� ���� �����

�

��
��
��
�
�

���

������������ ��

������������ ��

������������ ���

(b) ε̃ vs. recall
Figure 5: No. of BPs = 1000 and 1 sequence per BP for
Internet Purchase Order dataset

For the sanitized database D̃, we considered 3 mini-
mum support thresholds: 5%, 7%, and 10% in Figure
5. The reason for choosing smaller support thresh-
old (5% and 7%) for differentially private dataset is
that addition of noise typically decreases the support
value for frequent patterns. However at 5% minimum
support and ε̃ ≥ 0.005 more than 75% of all the fre-
quent patterns of the original dataset are retrieved as
depicted in Figure 5(b). As depicted in Figure 5, both
precision and recall increases as the value of ε̃ in-
creases (i.e., lesser the noise, better the results.)

Precision and recall of frequent sequential pat-
terns w.r.t. number of BPs. Figure 6 (a) and (b)
shows the graph of average precision and recall values
measured against different number of input BPs for
the Internet Purchase Order. In this graph, ε̃ = 0.01,
minimum support threshold for frequent patterns in

�

��

��

��

��

��

��

��

	�

� ��� ���� ���� ���� ����

��
�
��
�
�
��
�
�

�����������
�

�������
����

��������
����

��������
����

(a) No. of BPs vs. precision

�

��

��

��

��

��

��

��

	�

�

���

� ��� ���� ���� ���� ����

�
�
�

��
��

�
�

�������������

����� �������

������ �������

������ �������

(b) No. of BPs vs. recall
Figure 6: ε̃ = 0.01 and minimum support threshold for fre-
quent patterns in D = 10% and for D̃ = 5% – Internet Pur-
chase Order dataset

D is set to 10% and for D̃ is set to 5%. From each
of the input BP, we randomly selected 1, 2, and 3
execution sequence for generation of the output BP
workflow. As depicted in Figure 6, the precision and
recall improves as the number of input BPs increases.
Moreover, the results improve with the increase in the
number of execution sequences from each BP for gen-
eration of the output BP workflow.

7 RELATED WORK
Differential privacy for sequence dataset.

(Chen et al., 2012) have proposed a differential pri-
vacy based approach for sanitization of trajectory
data. In this approach they first build a prefix tree
from the given trajectory dataset and then add Lapla-
cian noise at each level of the prefix tree to satisfy
differential privacy. From the noisy prefix tree, they
regenerate trajectories for the sanitized dataset. Their
approach can be an alternate approach for genera-
tion of the sanitized BP Execution sequence database
as trajectories are essentially sequence of locations.
However, in their prefix-tree based approach, there
can be multiple branches in the prefix tree for se-

quences that overlap considerably but differ only in
the beginning part of the sequences. Due to this, the
memory requirement for generation of the prefix tree
for BP execution sequence dataset will be high.

Collaborative business process composition.
There is some work on collaborative design and com-
position of business processes by utilizing social net-
work platforms (Koschmider et al., 2010; Dengler
et al., 2011; Bruno et al., 2011; Brambilla et al.,
2012). These social network platforms serve as a
recommendation system that facilitates a process de-
signer to complete or update a formal BP model on
the basis of the prior usage of the process fragments
by other peers. However, the privacy issues related to
sharing of the usage patterns and process fragments
are not considered.

(Bentounsi et al., 2012b; Bentounsi et al., 2012a)
have proposed an anonymization-based approach for
privacy preserving outsourcing of business processes
in a multi-tenant cloud environment. In their ap-
proach a business process is broken down into smaller
fragments for re-use in future process modeling. A
fragment is disclosed for process composition only
if it satisfies the Kl anonyfrag requirement. This re-
quirement enatils that the disclosed fragment must
have at least K clones distributed among l tenants.
This anonyfrag approach indeed satsifies the privacy
requirement. However, it requires the process de-
signer to manually compose the business process
from the available fragments. In contrast, our pro-
posed approach generates the initial BP workflow
(based on the given requirements) that can be refined
by the process designer.

8 CONCLUSION
In this paper, we have described a privacy pre-

serving approach to enable collaborative composi-
tion of executable business processes. Organizational
business process details in form of BP execution se-
quences are collated together in a differentially pri-
vate central repository that supports process mining
for generating business processes based on users re-
quirements and high level design specifications. The
results from the experimental evaluation show that
the proposed approach is effective in terms of pre-
serving utility of the original BP execution sequence
database while guaranteeing privacy. This utility
is measured with respect to preservation of process
workflow structure and semantics as well as preserva-
tion of Web service ranking.

One limitation of the proposed approach is that
the central repository is trusted to sanitize the data
before making it public. We can employ encryp-
tion based techniques to address this limitation which

would add significant computation and communica-
tion overhead. In the future, we plan to develop effi-
cient techniques to deal with cases in which the cen-
tral repository cannot be fully trusted.

ACKNOWLEDGEMENTS
The work of Irshad and Shafiq is supported by the
LUMS Faculty Initiative Fund Grant. The work of
Vaidya is supported by the National Science Founda-
tion under Grant No. CNS-1422501.

REFERENCES

Baresi, L. and Guinea, S. (2011). Self-supervising bpel pro-
cesses. IEEE Trans. Softw. Eng., 37(2):247–263.

Bentounsi, M., Benbernou, S., and Atallah, M. J. (2012a).
Privacy-preserving business process outsourcing. In
Web Services (ICWS), 2012 IEEE 19th International
Conference on, pages 662–663.

Bentounsi, M., Benbernou, S., Deme, C. S., and Atallah,
M. J. (2012b). Anonyfrag: An anonymization-based
approach for privacy-preserving bpaas. In Proceed-
ings of the 1st International Workshop on Cloud Intel-
ligence, Cloud-I ’12, pages 9:1–9:8.

Brambilla, M., Fraternali, P., and Vaca, C. (2012). Bpmn
and design patterns for engineering social bpm solu-
tions. In Business Process Management Workshops,
pages 219–230.

Bruno, G., Dengler, F., Jennings, B., Khalaf, R., Nurcan,
S., Prilla, M., Sarini, M., Schmidt, R., and Silva, R.
(2011). Key challenges for enabling agile bpm with
social software. Journal of Software Maintenance and
Evolution: Research and Practice, 23(4):297–326.

Chen, R., Fung, B. C., Desai, B. C., and Sossou, N. M.
(2012). Differentially private transit data publication:
a case study on the montreal transportation system. In
Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining,
KDD ’12, pages 213–221.

Chun, S., Atluri, V., and Adam, N. R. (2002a). Dynamic
composition of workflows for customized egovern-
ment service delivery. In Proceedings of the 2002
annual national conference on Digital government re-
search, pages 1–7.

Chun, S. A., Atluri, V., and Adam, N. R. (2002b). Domain
knowledge-based automatic workflow generation. In
Database and Expert Systems Applications, pages 81–
93.

Chun, S. A., Atluri, V., and Adam, N. R. (2005). Using
semantics for policy-based web service composition.
Distributed and Parallel Databases, 18(1):37–64.

Dengler, F., Koschmider, A., Oberweis, A., and Zhang, H.
(2011). Social software for coordination of collab-
orative process activities. In Muehlen, M. and Su,
J., editors, Business Process Management Workshops,
volume 66 of Lecture Notes in Business Information
Processing, pages 396–407.

Dwork, C. (2006). Differential privacy. In Bugliesi, M.,
Preneel, B., Sassone, V., and Wegener, I., editors, Au-
tomata, Languages and Programming, volume 4052
of Lecture Notes in Computer Science, pages 1–12.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006).
Calibrating noise to sensitivity in private data analysis.
In Proceedings of the Third conference on Theory of
Cryptography, TCC’06, pages 265–284.

Evdemon, J., Arkin, A., Barreto, A., Curbera, B., Goland,
F., G.Kartha, Khalaf, L., Marin, K., van der Rijn, M.,
and Yiu, Y. (2007). Services business process execu-
tion language version 2.0. OASIS Standard.

Kerschbaum, F. and Deitos, R. J. (2008). Security against
the business partner. In Proceedings of the 2008 ACM
workshop on Secure web services, SWS ’08, pages 1–
10.

Kifer, D. and Machanavajjhala, A. (2011). No free lunch
in data privacy. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’11, pages 193–204.

Koschmider, A., Song, M., and Reijers, H. A. (2010). Social
software for business process modeling. Journal of
Information Technology, 25(3):308–322.

McSherry, F. D. (2009). Privacy integrated queries: an ex-
tensible platform for privacy-preserving data analysis.
In Proceedings of the 2009 ACM SIGMOD Interna-
tional Conference on Management of data, SIGMOD
’09, pages 19–30.

Moser, O., Rosenberg, F., and Dustdar, S. (2008). Non-
intrusive monitoring and service adaptation for ws-
bpel. In Proceedings of the 17th international confer-
ence on World Wide Web, WWW ’08, pages 815–824.

Paliwal, A. V., Shafiq, B., Vaidya, J., Xiong, H., and Adam,
N. (2012). Semantics-based automated service dis-
covery. Services Computing, IEEE Transactions on,
5(2):260–275.

Quinlan, J. R. (1986). Induction of decision trees. Machine
learning, 1(1):81–106.

Silva, R., Zhang, J., and Shanahan, J. G. (2005). Probabilis-
tic workflow mining. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowl-
edge discovery in data mining, KDD ’05, pages 275–
284.

Turban, E., Lee, J. K., King, D., Liang, T. P., and Turban,
D. (2009). Electronic commerce 2010.

Van der Aalst, W., Weijters, T., and Maruster, L. (Sept.).
Workflow mining: discovering process models from
event logs. Knowledge and Data Engineering, IEEE
Transactions on, 16(9):1128–1142.

van der Aalst, W. M., Pesic, M., and Song, M. (2010). Be-
yond process mining: from the past to present and fu-
ture. In Advanced Information Systems Engineering,
pages 38–52.

Wen, L., Wang, J., Aalst, W., Huang, B., and Sun, J. (2009).
A novel approach for process mining based on event
types. Journal of Intelligent Information Systems,
32:163–190.

