
Key Management for Simultaneous Join/Leave in Secure Multicast
G. Noubir, F. Zhu, A. H. Chan
College of Computer Science

Northeastern University, Boston, MA, USA
{noubir, zhufeng, ahchan}@ccs.neu.edu

Abstract: In this paper, we address the problem of key update for secure group communication.
We focus on the case where multiple requests for join or leave are received within short intervals
of time. We have shown that there exists an optimal tree structure that minimizes the
communication complexity of the key update. We introduce and compare several algorithms for
simultaneous key update, efficient tree construction, and tree adaptation to variable requests load.
We also show how the bandwidth requirement for key management can be traded with coarser
group access control.

1 Introduction
Multicast communication offers the potential of delivery of data and multimedia to multiple
receivers using fewer resources than unicast communication. Several applications can benefit
from multicast such as delivery of stock market information, electronic newspapers, video-
conferencing, interactive games, digital battlefield, etc. To be commercially exploited multicast
communication has to be secured such that only authorized group members can access the
multicast session content. Management of the multicast group keys faces a serious scalability
problem. Indeed, whenever the group membership changes (i.e., a new member joins or a
member leaves) the multicast group key has to be changed. We have previously proposed an
algorithm that reduces the communication complexity of key update for a single join/leave from
O(N) to O(log N) [Noub98, Noub99, NA99]. This algorithm was independently discovered in
[WGL98]. The principle of this algorithm is to map the users with the leaves of a tree. Each user
is provided with all the keys on the path from his leave to the root. The root key is the group key.
When a user leaves/joins all the keys in his possession have to be renewed. This can be done
starting from the lowest level in the tree. If the tree is binary (Figure 1), at each level the new key
can be securely communicated by encrypting it using the two lower level keys. Since the tree has
O(log N) levels the communication complexity of the key update is also O(log N).

K

K0 K1

K00

K000 K001 K010 K011 K100 K101 K110 K111

K01 K10 K11

M0 M1 M2 M3 M4 M5 M6 M7

Figure 1. Example of a binary key-tree. A key update requires only two messages per tree-level.

The previously proposed algorithms process one request at a time and are optimal when the
requests for key update are received one at a time. However, several multicast applications have
high group dynamic or have time variant group dynamic. This results in simultaneous key update
requests. The reason for simultaneity could be that the application trades bandwidth with fine
grain group access control maintenance, or because the group is so dynamic that the key update

cannot keep up with the request queue due to the limited bandwidth available for key update. For
example a stock market multicast application, where the users pay for the duration of time they
receive stock quotes, would probably have a large number of simultaneous requests to join or
leave the multicast group. A pay-TV multicast application would experience a high number of
requests to join the group in the beginning of a program or movie and a high number of requests
at the end of the program. Algorithms proposed for the key update [Noub98, WGL98, Noub99,
NA99] have a communication complexity O(log N) for a single join/leave request in a group of
size N. This implies a communication complexity of O(M log N) for M requests. We are
interested in algorithms that reduce the communication cost of simultaneous key update requests
under variable group dynamic. In addition to processing simultaneous requests, the group
controller of a multicast application can also trade bandwidth with strict group structure
maintenance. Indeed, the group controller can process group update requests every T units of time
(See Figure 2). The simultaneous processing of all requests received during the last T units of
time can reduce the average communication complexity of the key update if adequate algorithms
are used.

K K 1 1 K K 2 2 K K 3 3 K K 4 4 K K 5 5

Alice Joins Alice Joins

Bob Leaves Bob Leaves

Carol Joins Carol Joins

Alice Leaves Alice Leaves
t t i i t t i+1 i+1 t t i+2 i+2 t t i+3 i+3

K K 1 1 K K 2 2 K K 3 3 K K 4 4 K K 5 5

Join/Leave Rqst

Key update
time period

Figure 2. Single join/leave key update versus simultaneous key update with variable period time.

In section 2, we summarize our theoretical results on the structure of the optimal key-tree and
provide an algorithm for determining the optimal tree for a given probability of key update. In
section 3, we generalize our key update algorithms to the case when simultaneous requests are
received. In section 4, we show that the bandwidth required for securing the multicast group can
be reduced if traded against a coarser access control.

2 Problem statement and theoretical results

2.1 Optimal tree structure
Given a dynamic multicast group such that simultaneous key update requests are possible. How
can we reduce the communication complexity of key update given that, at each step of the
algorithm of key update, each user has a probability p to request an update of the group key? In
the rest of the paper, we assume that all users have the same probability of leaving or joining the
group p. The proposed algorithms can be extended to the case where each user has a specific
probability for joining/leaving the group. This can be done using similar techniques as proposed
in [Poov99].

In [ZNC01], we have shown that the optimal tree structure that minimizes the communication
complexity of key update has a special structure. These results are summarized in the following
theorem.

Theorem (optimal key structure): Let G be a multicast group where |G| = N = 2k. Each user has
a probability p to request a key update. If we restrict the key-tree to trees where each node can
have an arity of 2i, then the optimal tree that minimizes the communication complexity of the key
update (i.e., sum of sizes of all packets used for key update) has the following structure: 2a 22 22

22…22 [22|21]. The root node has arity 2a, the lowest level node has arity 22 or 21, and all
intermediary nodes have arity 22. The value of a depends on p.

The detailed proof of the theorem is described in [ZNC01]. Using dynamic programming we
verified the validity of the theorem. The optimal tree structure for N = 216 is given in Table 1.
The intuition behind this structure is that for reasonably high values of p all the top levels keys
have to be changed. In this case a flat structure becomes more efficient.

p Average number of update
requests

Tree structure:
2a 22 22 … 2222|1

0.5 65536 16
0.25 43504 14 2
0.062 18437 12 2 2
0.031250 11201 11 2 2 1
0.007813 6596 10 2 2 2
0.003906 3804 9 2 2 2 1
0.001953 2156 8 2 2 2 2
0.000977 1205 7 2 2 2 2 1
0.000488 666 6 2 2 2 2 2
0.000244 365 5 2 2 2 2 2 1
0.000122 198 4 2 2 2 2 2 2
0.000061 107 3 2 2 2 2 2 2 1
0.000031 57 2 2 2 2 2 2 2 2
0.000015 29 2 2 2 2 2 2 2 2

Table 1. Tree structure as a function of the probability of a user requesting a key update.

2.2 Determining the optimal tree structure
To determine the optimal tree structure one can notice that whenever the probability of key
update p is below some value pthrsh then a single level tree (of arity N = 2k) is not optimal and has
to be broken. If the optimal tree has structure 2a 22 22 … 2222|1 then the probability to update the

keys on the first level is:
ak

p
−

−− 2)1(1 . Combining the threshold probability and looking at
the first two levels of the tree we can deduce the tree structure of the optimal tree. We assume that
pthrsh is pre-computed and stored in a table pthrsh[N].

k (N = 2k) 3 4 5 6 k > 7
pthrsh 0.262647 0.291468 0.292888 0.292893 0.292893

Table 2. Value of pthrsh as a function of k.

Theorem: The optimal tree structure is either 2a 22 22 … 2222|1 or 2a-1 22 22 … 2222|1, where
akak

ppp thresh

−+−

−−≤<−− 22)1(1)1(1
)1(

. This result is based on the fact that in

an optimal tree any sub-tree should also be optimal [ZNC01].

The following algorithm returns the optimal tree structure for a group of N users, each
requesting a key update with probability p.
Algorithm Optimum-Tree (N = 2k: number of users, p: probability of user key update)

 Let a = smallest number s.t.
akak

pNpp thresh

−+−

−−≤<−− 22)1(1][)1(1
)1(

;

 IF (Comm.-Complexity(2a 22 22 … 2222|1) > Comm.-Complexity(2a-1 22 22 … 2222|1))
 THEN optimal-tree-structure = 2a 22 22 … 2222|1
 ELSE optimal-tree-structure = 2a-1 22 22 … 2222|1;
 /* The arity of the last level in the tree depends on if k and a have the same parity */
END-ALG

The following algorithm computes the communication complexity of updating the tree keys when
each user has probability p to request an update and when the tree has structure 2a1 2a2 … 2an.
Algorithm Comm.-Complexity(p, 2a1 2a2 … 2an)

;2;)1(1 2
an

an
anan PCpP

an

=−−=

For (i = n-1 to i = 1)

);(2;)1(1)1(

2
)1(aiia

ai
aiiaai PCCPP

ai

+=−−= ++

RETURN(Ca1);
END-ALG

3 Algorithms for simultaneous join/leave
In this section, we first recall the key update algorithm for a single join/leave request. Then we
present several algorithms for simultaneous key update. For sake of simplicity we consider the
generic key update request (i.e., it could be a join or leave request). Deriving the specific
algorithm for the join, or leave is easy. The group controller maintains a tree structure of l levels.
A key is associated to each leave and node. Each user is assigned to a leave identified by Ma1…al.
Each user is given all the keys on the path from his leave to the root of the tree {K, Ka1, Ka1a2, …,
Ka1…al}. We generalize the key update algorithm from a fixed arity tree to a multilevel tree.

3.1 Processing of requests one at a time
Algorithm Key-Update-Single-Rqst (Ma1…al)
For i = l-1 .. 0
 Select(Ka1…ai); /* select a new key for level i */

 Send({)(...1...1 aiaaiajKa KE | for 0 ≤ a j< arity(level i+1)})

 /* update all nodes affect by the key update by sending the new level i key encrypted by
level i+1 keys */

END-ALG

If the tree is binary, this algorithm has a communication complexity of 2Log2 (N) (See Figure 1).

3.2 Multiple requests processing
This algorithm processes key updates every T units of time. Simultaneous processing of multiple
requests allows changing a key only once if it is on the path of several users being processing.

Algorithm Key-Update-Multiple-Rqst (T: time update period)
Every (T units of time)
 U = {set of users who requests a key update during the last T units of time}
 For i = l-2 to 0
 For-All (a1…ai s.t. ∃ Ma1…aia’i+1…a’l-1 ∈ U)
 Select(Ka1…ai); /* select new keys that have to be updated for level i */

 Send({)(...1...1 aiaaiajKa KE | for 0 ≤ a j≤ arity(level i+1)});

END-ALG
We compared through simulation a fixed 4-ary tree where requests are processed one at a time,
fixed 4-ary tree with simultaneous processing of key update requests, and simultaneous
processing of requests over an optimal tree. The simultaneous processing of requests over an
optimal tree obviously performed better than the other algorithms. Furthermore the identification
and construction of the optimal is easy thanks to the algorithm provided in Section 2.2.

Figure 3. Number of messages for key update as a function of the probability p of a user leaving. The
red curve corresponds to a fixed 4-ary tree. The green curve corresponds to a fixed 4-ary tree where

key update requests are processed simultaneously. The blue line corresponds to simultaneous
processing of requests on the optimal tree.

3.3 Adaptive trees
In some multicast sessions the number of join/leave requests can change during the session
lifetime. For example the number of requests at the beginning of a session is generally higher
than the number of requests in the middle of a session. If this is the case the tree manager has to
change the tree structure to adapt to these variations. In order to efficiently adapt the tree
structure, we only use the trees of structure 2a 22 22 … 22. These trees are almost optimal and
have the advantage that switching from 2a 22 22 … 22 to 2a+2 22 22 … 22 can be easily achieved by
skipping the transmission of the keys of the second level of the tree. Switching from 2a+2 22 22 …
22 to 2a 22 22 … 22 can be achieved by gradually introducing an additional second level in the tree
and transmitting the corresponding keys.

 K

K0 K1

K00

K000 K001 K010 K011 K100 K101 K110 K111

K01 K10 K11

M0 M1 M2 M3 M4 M5 M6 M7

Figure 4. Switching from a 2 2 2 structure to 22 2 can be done by skipping the update of the keys of
the second level. The reverse can be done by gradually introducing an additional layer.

4 Bandwidth versus access control granularity
The number of messages as a function of the probability of leaving can be used to devise another
scheme that reduces the bandwidth requirements of key management. Here, we assume that we
have some flexibility for deciding when to update the group keys. If requests are grouped and
processed simultaneously, then using the tree structure reduces the total number of messages per
unit of time. Let C(p, T) be the communication cost per unit of time of key update when the users
have a probability p of leaving and T is the key update period of time. This corresponds to the
curves shown in Figure 3, where T is also the unit of time (we only consider the best curve in the
figure). If within T the probability of a user leaving is p then the probability of a user leaving
within nT is upper-bounded by np. Thus the communication complexity of key update C(p, nT) ≤
C(np, T)/n (we divide by n to normalize the cost to a single period T). For example if p = 0.001,
then (from the green-curve): C(p, T) = 1254 messages. Taking n = 5 , C(np, T)/n = 958, which is
24% better than C(p, T). Similarly taking n=20, gives C(np, T)/n =726.5, which is 46% better
than C(p, T). This is a considerable gain in bandwidth. The drawback of delaying the processing
of the key update requests is that some users will remain within the group for 5 or 20 more units
of time. It is up to the application designer/operator to trade-off precise access control with
bandwidth.

5 Conclusion
In this paper, we have summarized our results on efficient key update for secure multicast. We
have shown that when simultaneous key update requests can be processed simultaneously then
there exists an optimal tree structure for key management. We provided an efficient algorithm for
determining the optimal tree structure as a function of the probability that a user requests a key
update. We compared several key update algorithms and shown that it is possible to efficiently
adapt the key-tree when the probability of key update changes during the lifetime of a multicast
session. Finally, we have shown that it is possible to trade-off the bandwidth requirement of key
management with a coarser access control of the group membership.

Reference
[NA99] G. Noubir, and L. von Allmen (1999), “Security Issues in Internet Protocols over Satellite

Links”, In Proceedings of the IEEE Vehicular Technology Conference (VTC’99), Holland.

[Noub98] G. Noubir (1999), “Optimizing Multicast Security over Satellite Links”, European Space
Agency Project, Work package 20 report, version 0.1, April 1998.

[Noub99] G. Noubir (1999). “A Scalable Key Distribution Scheme for Dynamic Multicast Groups.” In
Proceedings of the Third European Research Seminar on Advances in Distributed Systems,
Madeira Island, Portugal.

[Poov99] R. Poovedran (1999), “Key Management for Secure Multicast Communications”, Ph.D.
Thesis, University of Maryland, College Park, 1999.

[WGL98] Ch.-K. Wong, M. Gouda, and S. S. Lam (1998), "Secure Group Communications Using Key
Graphs", Proceedings of ACM SIGCOMM, Vancouver, British Columbia, September 1998.

[ZNC01] F. Zhu, G. Noubir, and A. H. Chan (2001), “Optimal Tree Structure for Key Management of
Simultaneous Join/Leave in Secure Multicast”, Technical Report, Wireless Security
Laboratory, Northeastern University, Boston, MA, USA, October 11th, 2001.

