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Abstract: 

As applications of secure multicast in networks continue to grow, the demand for an 
efficient scheme to manage group keys for secure group communication becomes more 
urgent.  In this paper, we propose a new key tree structure for group key management. With 
this optimal tree structure, system resources such as network bandwidth can be saved. We 
devise an algorithm to generate this optimal tree and show that it can be implemented 
efficiently. We also design an adaptive system for group key management which consists 
of four components:  a request receiver, a key tree update controller, a delay calculator and 
a request predictor.  This system can maintain the optimality of the key tree dynamically. It 
is verified by theoretical analysis and simulation result that the performance of our scheme 
is better than other schemes based on traditional tree structures.  

 
 
1. Introduction 

Multicast communications provide efficient delivery of data from a sender to 
multiple recipients. Compared with unicast communications used in a large group, it 
consumes fewer resources, such as network bandwidth and energy. Network applications, 
such as the delivery of stock market information, multi-party video-conferencing, pay-
per-view video programs, are based on multicast communication model to deliver data to 
authorized members. 

In a secure group communication system, data privacy can be achieved by a shared 
group key. Only the authorized members know the group key. But usually group 
memberships vary over time. Whenever some members join or leave the group, the 
shared key needs to be changed. Thus there must exist an efficient group key 
management system to maintain group memberships such that only authorized group 
members are able to access the group key for that group. At the same time the group key 
management system must be responsible for generating, updating and delivering the keys 
to the authorized members.  

There are two desirable properties for the shared group key: first, the BAC 
(backward access control) property, which means that new users should not be able to 
decrypt past group communications with their new keys; second, the FAC (forward 
access control) property, which means that the evicted users should not be able to decrypt 
future group communications with their old keys.  

For a group with many users, join/leave requests happen frequently. Since a group 
key management center needs to send out a lot of re-keying messages to authorized users 
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with limited bandwidth, the bandwidth for re-keying is the biggest bottleneck in current 
applications. In this paper, we will consider communication complexity, which is 
measured by the number of messages that need to be sent for re-keying in unit time.  

There are two kinds of re-keying protocols. One is the individual re-keying 
protocol, in which the system updates the group key every time a request is received. 
Another kind of protocol is the periodic batch re-keying protocol, in which the group 
controller does not immediately perform updating for each request, but waits until several 
requests have accumulated to perform re-keying.  

In [1][2], individual re-keying and the associated performance are discussed. 
Wong[1] proposed the key graph approach to facilitate group re-keying, and the 
communication complexity of group re-keying for each request is O(log N), where N is 
the group size. There is no extra delay to process user requests in the individual re-keying 
protocols. But it is difficult to control the synchronization of re-keying and it can be 
inefficient to do updates for a batch of requests [6]. The periodic batch re-keying protocol 
can significantly save the resources in communications. However the Forward Access 
Control property may not be guaranteed within the re-keying period (also known as the 
vulnerablilty windows). In many applications, such as pay-per-view TV systems, the 
batch-updating mode is acceptable, if the system can guaranteed that the length of re-
keying period is in an acceptable range. In this paper, we only consider the batch mode. 

The paper is organized as follows. In section2, we propose a special key-tree 
structure and use it for efficient re-keying.  Then we describe the algorithm to construct 
the optimal tree in section 3. In section 4, we compare the performance of our protocol 
based on the optimal tree with other protocols. In section 5, we describe the adaptive 
algorithm for delay control. A complete group key management system, which 
implements the above ideas, is presented in section 6. In section 7, we show the 
simulation results of both the systems with the adaptive algorithm and the systems with 
the non-adaptive algorithm.  Finally, section 8 concludes the paper. 
 
2. Structure of the Optimal Key Tree. 

To facilitate updating group keys, a key tree[1] is introduced. A key tree is a rooted 
tree with the group key at the root, the leaf nodes as U-nodes corresponding to group 
members and internal nodes as K-nodes. The group controller gives each member an 
individual key that is stored at the U-node and auxiliary keys stored in the K-nodes 
located along the path from the U-node to the root, including the group key stored at the 
root.  

The key tree proposed in [1] is regular in that every K-node has a fixed number of 
child nodes (K-nodes or U-nodes). The authors recommended the use of a binary tree. 
However such a key tree may not be efficient for batch re-keying. For example, if the 
system needs to process many requests from members, then the keys contained in the 
higher level K-nodes always need to be updated but may not be essential in the re-keying 
process. In this section, we propose a tree structure that is optimal with respect to 
bandwidth usage. Such a tree is called an optimal tree.   

For simplicity, we restrict the key-tree in our discussion to trees where the number 
of branches of each node is 2i and the number of users is N=2k. With this structure, a tree 
could be converted to another tree by adding or removing a level of nodes whenever 
needed, as shown in Figure 1. 
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The performance of a re-keying scheme depends on the structure of the key tree. 
The performance can be improved by organizing the tree structure with respect to the re-
keying probability of users [3][4].   We define the re-keying probability pi of a user Ui as 
the probability that the system should re-key some users’  keys including Ui ’s key in one 
unit time. To simplify the analysis, we assume the re-keying probabilities of all users are 
equal to p. We also assume that the re-keying probability of each user is independent of 
the others. 

First let us define some notation.  
• Let T(a1, a2,…at; p ) denote a tree with t-levels, such that the top (first) level has  

2a1  branches, the i-th level has 2ai branches .. and the bottom(last) level has 2at 

branches, the re-keying probability of each user is equal to p.  
We will show that if a tree T(a1, a2,…at; p) is an optimal tree, then a1≥2, 

a2=a3=…=at-1=2 and  at= 1 or 2.  
 
 

 
 

 
 

 
 
 
 
 
 
 

 
 
 
 

Lemmas 1, 2 and 3 will establish the optimality for trees with only two levels. 
Lemma 4 show how optimal trees can be established recursively from smaller trees. 
Detail proof of the lemmas and theorems can be found in the appendix.  

For p=0, no user joins/leaves and so no re-keying process is needed. For p=1, all 
users join/leave, clearly the optimal tree is a flat tree with one level. Henceforth, we can 
assume 0<p<1 in following discussion. 

 
Lemma 1 For a given tree T(k-j, j; p), if  j >2, then this tree T(k-j, j; p) is not an optimal 
tree. 

 

K1’  

T1 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T2 T3 T4 

K2 K3 K4 K5 

K1 

T1 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T2 T3 T4 

(a) A key tree with at least 3 levels 

(b) A key tree obtained from (a) by removing level 1  

Figure 1 Conversion of a key tree 
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From Lemma 1, we know that the only two level optimal trees are T(i,1; p) and 
T(i,2; p).  

 
Lemma 2 The tree T(1,1; p) is not an optimal tree. 
 
Lemma 3 The tree T(1,2; p) is not an optimal tree. 

 
Combining with Lemma 1, these two lemma show that the two-level optimal trees 

must be T(i, j; p), where i>1, j = 1 or 2. 
 

Lemma 4 If a tree T(a1, a2,…at; p) is an optimal tree, then, for any i and j, the subtree 

T’ (ai, ai+1,…aj; pj ) is also an optimal tree, where ||)1(1 jT
j pp −−= , ∏

+=

=
t

jk

a
j

kT
1

2||  is the 

number of leaves on the subtree whose root is on j level of T(a1, a2,…at; p) . 
 

Lemma 4 shows that any subtree of an optimal tree is also an optimal tree. Using 
Lemma 1, 2, 3 and 4, we can prove the following theorem. 
 
Theorem 1: If a tree T(a1, a2,…at; p) is an optimal tree, then, either it is a flat tree or 
a1≥2, a2=a3=…=at-1=2 and  at= 1 or 2 
Proof: 
If the optimal tree T(a1, a2,…at; p) is not a flat tree, in other words, it has more than one level, 
since it is an optimal tree, by Lemma 4, all subtrees Ti(ai,ai+1; pi+1), for 1 ≤ i <t, are optimal. From 
Lemma 1, ai=1 or 2 for 2 ≤ i ≤ t. From Lemma 2 and Lemma 3, ai=2 , for 2 ≤ i ≤ t-1), because 
Ti(ai,ai+1; pi+1) is optimal. Similarly, a1 can not be 1, because T1(a1,a2; p2) is optimal. Thus a1≥2. 

 
In the next section, we will give an efficient algorithm to generate the optimal tree. 

 
3.  Algorithm for Finding the Optimal Tree. 

In the previous section we have established that the optimal tree must be a flat tree 
or be of the form  -- T(a1, 2,…2, at; p), with a1≥2 and at= 1 or 2. Next we will use T(a1; t; 
at ; p) to denote T(a1, 2,…2,at; p) and we will use T(a1; 1; 0 ; p) to denote a flat tree. 

A simple naïve method to determine the values a1 and t for an optimal tree is to 
computer the expected number of messages  ;;1

),( ; p) a tT(a t
pNM needed to be transmitted 

for each tree T(a1; t; at ; p). 
 

Lemma 5. Given a tree T(a1; t; at ; p),  
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By compare all these values, the values a1and t that correspond to the minimal value 

 ;;1
),( ; p) a tT(a t

pNM  provides the optimal tree for a given probability p. I this section, we 

present a more efficient algorithm using binary search.  
First, we consider the trees with one or two levels. If we use a flat tree, then the 

expected number of message needed to send is 2k(1-qN), where q = 1- p, k = log2N. If we 
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use a tree with two levels, the expected number of messages sent is 

])1(1[])1(1[2 2/ ta
t pNp NaN −−+−− for at = 1 or 2. 
By comparing these quantities and solving the inequalities: 

])1(1[])1(1[2)1(2 2/ ta
t pNpq NaNNk −−+−−<−  for at = 1 or 2 

we can identify the probability p1(k) of user joining/leaving the group under which 
a one-level tree is better than a two-level tree. Let q1(k) = 1 - p1(k). 
 

Lemma 6. Let the number of user be N=2k and q1(k) be defined as above. Then the 
values of q1(k) are given in Table.  

k q1(k) 
3 0.7373527057593127 
4 0.7085316342724187 
5 0.7071121772808317 
6 0.7071067812696629 

≥7 0.707106781187345 
 
In general, for a given k, q>q1(k), then a two-level tree is better than a one-level 

tree. We can build an optimal tree inductively from this result. Intuitively, if we consider 
each subtree TJ of T(a1, a2, …, at) beyond the first level as a single user J (see 
Figure1(a)), then T(a1) is a one-level tree. Thus to compute a1 is to find j such that the 
probability of each subtree TJ joining/leaving is 1- q1(j), where J consist of all leaves in 
TJ, |J| = 2k-j. However, the probability of user J joining/leaving given by q’ (j)= (1-p)2

k-j
 

may not equal to 1-q1(j). In order to find a1, we can find j by Algorithm 1 such that  
q’ (j+1)>q1( j+1),  and q’ (j) ≤q1(j).  …..(1) 

 
Algorithm1 
1. Given N=2k and q= 1-p,  
2. Use by binary search to find, j in  [2,k] that satisfies the inequalities 

in (1). 
3. If j exist, then compare the expect number of messages based on the 

trees, T(j, t, at; p) with T (j-1, t, at+1; p) (if at=2, then use T (j-1, t+1, 
at-1; p) instead), i.e.  ;;1

),( ; p) a tT(a t
pNM and  1;;11

),( ; p) a tT(a t
pNM +−  , 

the optimal tree is the one with the smaller values.  
   Otherwise, the optimal tree is T(2; log4N; at; p)). 

 
 
Theorem 2. The tree found by Algorithm 1 is the optimal tree. 
Proof:  
We only need to show that if j exist in Algorithm 1 Step 3, then only two trees T1(j; t; at;  
p) and T 2( j-1; t ; at+1; p) can be optimal. Without lose generality, we assume at = 1.   
We will first consider any other tree T’ (m; tm;1; p) which is not T1(j; t; 1; p) and show 
that T’ (m; tm;1; p) can not be an optimal tree.  
Case 1: m > j , Since q’ (m)>q’ (j+1)> q1(j+1), a two-level tree T(m-2;2;1;  1-q’ (m)) is 
better than a one-level tree T(m; 1;1;1-q’ (m)). 
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Thus the tree T”(m-2; tm +1; 1; p) is better than the tree T’ (m; tm ; 1 ; p). So T’ (m; tm; 1; p) 
is not an optimal tree. 
Case 2: m < j , Since q’ (m)<q’ (j)≤ q1(j+1), a one-level tree T(m+2; 1;0;  1-q’ (m)) is better 
than a two-level tree T(m; 2; 1; 1-q’ (m)). 
Thus the tree T” ’ (m+2, tm-1,1 ; p) is better than tree T’ (m; tm; 1; p). So T’ (m; tm; 1; p) is 
not an optimal tree. 
Next for any other tree T’ (m; tm; 2; p), where m≠ j-1, it can not an optimal tree, we 
compared it with T 2( j-1; t ; 2; p) and similarly show that it can not be an optimal tree. 
So the optimal tree must be either T1(j; t;1; p) or T 2(j-1; t; 2; p). By comparing the 
corresponding expected number of messages. We can construct the optimal tree as given 
in Step 3 of Algorithm 1. 
 

Next, we will show that the computation complexity of Algorithm 1 is very low. 
 

Theorem 3.  The complexity of Algorithm 1 is O(loglog N). 
Proof:  
For a given number of users N=2k, the height of the tree is at most m= � �Nlog4 = k/2 

because the tree is a 4-ary tree. Since the main body of this algorithm is a binary search 
algorithm for searching in interval [1, k], so the complexity of this algorithm is O(loglog 
N).  
 
4. Performance of Batch Processing using an Optimal Tree 

In this section, we will compare the performance of our scheme with other 
commonly used schemes. Namely 

(1) Processing every key update request as it is received using a fixed 4-ary tree as 
the key tree structure. 

(2) Batch processing of several key update requests over a fixed 4-ary tree  
(3) Batch processing of several requests using a flat tree, which is using unicast. 
(4) Batch processing of several requests using an optimal tree T(a1, a2, .., at) 
 
Let M(N,p) denote the expected number of keys needed to be updated for each 

processing. We consider an N-user optimal key tree with the probability of re-keying 
requests from each user to be p. To simplify the analysis, we assume that the key tree is 
balanced and complete.  

For the first scheme, the expected number of requests is Np. Each request is 
processed one by one, and every time it needs to send out log4N messages, thus,  

NNppNM 4log),( = . 
 
The second scheme uses simultaneous processing for several key update requests 

over a fixed 4-ary tree. At level i, there are 4i keys stored in the nodes. For each key in 

this level, the probability that this key needs to be changed is ])1(1[
14 −−− i

N

p . Thus, 

�
=

−−−=
N
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For the third scheme, which uses simultaneous processing for several requests over 
a flat tree, the probability of the group key to be updated is 1–(1-p)N. Every time the 
group key is updated, N messages have to be sent, thus,  

])1(1[),( NpNpNM −−= . 
 

 For the fourth scheme using simultaneous processing for several requests over an 
optimal tree, then M(N,p) can be computed with the algorithm given in [5]. If tree T(a1; t, 
at; p) is the optimal tree, then by Lemma 5 
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These analysis results are shown in Figure 3 for N = 65536 and for p ranges from 0 

to 0.4. From Figure 2, we observe that the simultaneous processing for several requests 
over an optimal tree outperforms the other algorithms. The difference will become even 
larger as N becomes larger. The system with the optimal tree structure requires less 
system resources, such as CPU time and bandwidth, since fewer messages need to be 
encrypted and to be sent.  
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Figure 2. Comparison of performance of the re-keying operation 

 
  
 

5. Adaptive algorithm for delay control 
 

The optimal tree provides a key management structure to reduce bandwidth usage 
whenever an update is needed. The bandwidth may be further reduced if we increase the 
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access control granularity [5]. But, in most applications, making the time interval long is 
not a good solution because the vulnerability window [7] will be large. In this section, we 
propose an adaptive algorithm for delay control to find a good tradeoff between the 
bandwidth and access control granularity. 

Assume that key update is processed at time intervals t0, t1, t2,…, where ti is the i-th 
time interval. Since the length of messages broadcasted by the system used to process the 
updating group key requirements at a given time interval is an important parameter in our 
algorithm, we will first discuss two different methods of computing the length of 
messages broadcasted by the system used to process the updating group key requirements 
at ti. One method uses the length of the current time interval and the probability of user 
modification in unit time to predict the length of messages needed to process the requests 
in the i-th time interval. Another method is to scan the key tree after the current time 
interval to get the length of messages for processing the requests in the i-th time interval. 
Using the first method, the result can be pre-computed before the end of the time interval. 
The Key Management System can submit to the application server to request for 
bandwidth beforehand. Since the computation is based on the probability of user 
modification, the result may not be exact. On the other hand, the computation from the 
second method is exact, since the result is not based on prediction, but on scanning the 
key tree for actual requests at real time. So the outputs (Bi and ti) from Algorithm 2 are 
computed in real time. But the result of the function f(ti) can not be obtained before the 
end of time interval ti. So the Key Management System has to submit to the application 
server for bandwidth request at real time. 

Let f(ti) denote the length of messages broadcasted by the system to update group 
key requirements at ti. Let B be the default bandwidth for group key control, Bi be the real 
bandwidth used in the i-th time interval, tmax be the maximum length of time interval that 
the application will tolerate. 

Algorithm 2 given below computes time for delay to reach a good tradeoff between 
bandwidth usage and access control granularity. 

   
Algorithm 2 

Input ti-1  
1. t = f(ti-1) /B 
2. if t > tmax, set ti= tmax, else ti = t 
3. Bi = f(ti-1) / ti 
4. output Bi and ti 

 
The algorithm always tries to reduce the time interval by using the default 

bandwidth whenever possible. However, when the length of the time interval t obtained 
from using the maximal bandwidth still exceeds the application’s maximal acceptable 
length of time interval, the group key management system will then request more 
bandwidth from the system control of the application.  

 
6. A system for group key management 
 

In this section, we will construct a group key management system to process the 
update of group keys. This system is based on the optimal tree structure and the adaptive 
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algorithm to reduce system resources required and the size of vulnerability windows. The 
group key manager processes the requests from users, changes keys and distributes new 
keys to users.   

A group key management system has four components:  a request receiver, a key 
tree update controller, a delay calculator and a request predictor.  Figure 3 depicts such a 
system. If the client request rate is high, multiple request receivers may be set up in the 
network to communicate with the key tree update controller.  

When a user wants to join or leave the group, it sends a request with a time stamp to 
the key server housed in the Request Receiver. After the user and the key server mutually 
authenticate each other, the request receiver generates an individual key shared with the 
user to protect communication between the user and the key management system. The 
shared key is provided to the Key Tree Manager to be stored at a leaf node. 

 
 

 
 

 
 

Figure 3. A group key management system 
 

After the Request Receiver generates the user’s individual key, the user’s request is 
forwarded to the Request Predictor. The predictor will predict the probability of each leaf 
node of the key tree that is to be modified in the next time interval. These probabilities 
are then given to both the Key Tree Manager and the Delay Controller. The Key Tree 
Manager and the Delay Controller will maintain the optimal key tree and compute the 
length of time interval based on this information. 

The Key Tree Manager is responsible to manage the key tree and to generate new 
group keys. It assigns a position to a newly added node and marks the keys on the key 
tree that need to be updated. The Key Tree Manager also changes the key tree structure 
based on the probabilities received from the Request Predictor. It may change the number 
of branches at the top level of the key tree in order to maintain the optimal key tree 

Clients Requests  
Receiver
s 

Key Tree  
Manager 

Delay 
Controller 

Request Predictor 

Manager 
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structure according to the predicted probabilities. This can be easily accomplished by 
deleting or adding one level immediately below the top level.  

The Delay Controller computes and controls the size of the vulnerability window. 
By controlling the time delay, the system can perform the synchronized key update with 
variable time periods. It has been shown in [6] that the bandwidth required for securing 
the multicast group communication can be reduced if the time period of the key update 
can be dynamically changed. The Delay Controller sends its computed delay time to the 
Key Tree Manager, which will check if the time out is reached. If so, the Key Tree 
Manager will broadcast the updated keys to prepare the broadcast data. The Key Tree 
manager checks the nodes along each path from the new user node at the leaf to the root. 
If it finds a node that is marked, it will encrypt the new key stored in this node by using 
the keys stored in its child node.  

In addition to the four components described above, the Group Key Management 
Scheme has a Manager that allows human input to modify the parameters that effect the 
computation of probability of user joining/leaving and the time delay. 

 
7. Results and comparison 
 

We have carried out experiments to test bandwidth usage by the adaptive algorithm 
described in section 6, with the aim to minimize length of the time interval for batch 
processing under some given bandwidth constraint. The simulation results are shown in 
Figure 4(a) - Figure 4(f). 
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For ease of simulation, we assume the behavior curve of user requests is smooth. 
Figure 4(a) represents the behavior of a sinusoidal-like curve. We use a 4-ary tree as the 
key tree.  

In Figure 4(b), a fixed short time interval for batch processing is used. From this 
figure, we see that at times an unusually high bandwidth is needed to process the 
requests. The fluctuation of the bandwidth requirement is quite large. For real time 
applications this translates that at times insufficient bandwidth is available while at other 
times much bandwidth remains unused. In Figure 4(c), a fixed long time interval is used. 
In that case, minimal bandwidth is needed, but processing for requests are delayed for 
quite a long time providing a vulnerability window that can be exploited by attackers. 

In Figure 4(d), the adaptive algorithm is used. In that case, when the requests come 
frequently, the time interval is controlled to be relatively long and the bandwidth is kept 
lower than the maximum bandwidth that the application can accept. If the requests come 
infrequently, the time interval is controlled to be quite short. At that time, the requests 
can be accommodated very quickly.  

In the simulation shown in Figure 4(e), we increase the initial time interval to 10 
time units. By comparing Figure 4(d) and Figure 4(e), we can see that the performance of 
the system is not sensitive to the initial time interval if the requests do not come very 
frequently. It shows that our adaptive algorithm is robust with respect to changes in the 
initial time interval.  

If the maximum bandwidth that the application can accept is quite low, as shown in 
Figure 4(f), the time interval has to be relatively long. Sometimes a little more bandwidth 
is required from the application system to accommodate the requests. But this happens 
less frequently than in the case where the fixed short time interval is used as shown in 
Figure 4(b). The adaptive algorithm always tries to decrease the delay by using the 
limited bandwidth efficiently and always tries to keep the usage of bandwidth below the 
default bandwidth provided by the application systems.  

 
8. Conclusion 
 

In this paper, we have shown that batch processing for group key updates provides a 
more efficient means of utilizing resources than single request update. The new adaptive 
algorithm for group key management provides a tradeoff between bandwidth usage and 
vulnerability window size. Our scheme can handle the re-keying processing for secure 
multicast in a dynamic group. We have carried out simulations to examine the behaviors 
of bandwidth usage under such an adaptive system. We are currently building the system 
to be deployed for wireless multicast.    
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Appendix 

 
Lemma 1 For a given tree T(k-j,j; p), if  j >2, T is not an optimal tree. 
Proof: 

Let q = 1-p. For tree T(k-j,j; p),  the number of messages needed to be sent to update the 

key is 2k(1-q2j
) +2k-j(1-q2k

).  
For tree T(k; p), the number of messages needed to be sent to update the key is 2k(1- q2k

) 
For tree T(k-j, j-1, 1; p), the number of messages needed to be sent to update the key is   

2k-1(1- q2j
) +2k-j(1- q2k

) + 2k(1-q2) 
When 0 ≤q < 2(-j/2j) 

1-2j q2j
 >0 

�1-2j q2j
 +(2j-1) q2k

 >0 

�2j(1- q2j
)+(1- q2k

) > 2j(1- q2k
) 

�2k(1- q2j
)+ 2k-j (1- q2k

) > 2k(1- q2k
) 

This means that the tree T(k; p) is better than the tree T(k-j,j; p),   

When 1>q ≥ 2(-j/2j), we define f(q) = 1+ q2j
 -2q2,   

Then d2f(q) /dq2= (2j) (2j-1) q(2j-2)-4 

So d2f(q) /dq2≥ (2j) (2j-1) q2j
 -4 ≥ (2j-1)-4>0 

Thus f(q) is a convex function. 
And since, f(2(-j/2j)) = 1+2-j-2(-j/2j-1+1)< 1+2-3-21/4<0, f(1) = 0 
so f(q) < 0 for any q where 1>q ≥ 2(-j/2j) 
Thus when 1>q ≥ 2(-j/2j) 

1+ q2j
 -2q2<0 

�(1- q2j
)>2(1-q2) 

�2k(1- q2j
) >2k-1(1- q2j

) + 2k(1-q2) 

�2k(1- q2j
) +2k-j(1- q2k

) >2k-1(1- q2j
) +2k-j(1- q2k

) + 2k(1-q2) 
This means that the tree T(k-j, j-1, 1; p) is better than the tree T(k-j,j; p),   

So for any q∈(0,1), the tree T(k-j,j; p), j >2, is not an optimal tree. 
 

Lemma 2 For the tree T(1,1; p), it is not an optimal tree. 
Proof: 

Let q = 1-p. 
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For tree T(1,1; p), the number of messages (keys) needed to be sent is 4(1-q2) + 2(1- q4) 
For tree T(2; p), The number of messages (keys) needed to be sent is 4(1-q4) ,  
For any 0 < q < 1, 2>(1+q2), so 

2(1-q2) > (1-q2) (1+q2) =(1-q4) 
�2(1-q2) + (1-q4) > 2(1-q4) 
�4(1-q2) + 2(1-q4) > 4(1-q4)  

Thus T(1,1; p) is not an optimal tree. 
 
Lemma 3 For the tree T(1,2; p), it is not an optimal tree. 
Proof: 

Let q = 1-p. 
For the tree T(1,2; p), the number of messages (keys) needed to be sent is 8(1-q4) + 2(1- q8) 
For the tree T(3; p), the number of messages (keys) needed to be sent is 8(1-q8) 
For the tree T(2,1; p), the number of messages (keys) needed to be sent is 8(1-q2) + 4(1- q8) 
When 1>3q4, 8(1-q4) + 2(1- q8) < 8(1-q8), thus T(3) is better than T(1,2; p)  
When 1< 3q4, q4+2q2-1>0, so 

(q2-1)( q4+2q2-1)<0 
� 1-3q2+q4+q6<0 
�8-8(1+q2)+2(1+q2) (1+q4)<0 
�8(1-q2)-8(1-q2)(1+q2)+2(1-q2)(1+q2) (1+q4)<0 
�8(1-q4)+2(1-q8)>8(1-q2)+4(1-q8) 

so, T(2,1; p) is better than T(1,2; p) 
thus, T(1,2; p) is not optimal. 

 
 

Lemma 4 If a tree T(a1, a2,…at; p) is an optimal tree for modification then, for any i and 

j, the subtree T’ (ai, ai+1,…aj; p’ ) is also an optimal tree, where 
||)1(1' jTpp −−= , 

�
= +=

t

js
sa

jT 12||  

Proof:  
Let q = 1-p. 
If the subtree T’ (ai, ai+1,…aj; p’ ) is not an optimal tree, there is an optimal tree T’ ’ (a’ i, 

a’ i+1,…a’ j’; p’ ) , where ai+ai+1 …+ aj= a’ i+a’ i+1+…+a’ j’ 
When we replace the subtrees  T’ (ai, ai+1,…aj; p’ ) with tree T’ ’ (a’ i, a’ i+1,…a’ j’; p’ ) to obtain 

T’ ’ ’ (a1..ai-1,a’ i, a’ i+1,…a’ j’, aj+1…, at; p).  
For levels between i and j, we can reduce the number of messages to be transmitted is 

reduced.    
For other levels, the number of messages transmitted remains unchanged.  
So the total number of messages needed to be sent is reduced. 
Thus the T’ ’ ’ (a1..ai-1,a’ i, a’ i+1,…a’ j’, aj+1…, at; p) is better than T(a1, a2,…at; p),  
So the tree T(a1, a2,…at; p) is not an optimal tree, which contradicts the original 

assumption.  
 
Lemma 5. Given a tree T(a1; t; at ; p),  

])1(1[])1(1[2])1(1[2),( 2
1

2

242
 ;;

22111

1
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t
pNpppNM

t
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N
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; p) a tT(a −−+−−+−−= �
−

=

−+ −+
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Proof:  

For the top level, if the group key needs to be updated, 2a1messages need to be transmitted. The 
probability of the group key needing to be updated is 1-(1-p)N. So the expected number is 

])1(1[2 1 Na p−− .  
Similarly, for the level i (1< i <t) , if a key needs to be updates, 4 messages need to be 

transmitted. The probability of a key needing to be updated is ])1(1[
2212 −+−− ia

N

p . There are 

4212 −+ ia keys at level i.  So the expected number is ])1(1[2
2211 242 −+−−−+ ia

N
ia p  

For the bottom level, if a key needs to be updates, 2at messages need to be transmitted. The 

probability of a key needing to be updated is ])1(1[ 2 ta

p−− . There are taN 2/ keys at this level.  

So the expected number is ])1(1[ 2 ta

pN −− . 
Thus the expected total number is 
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2
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