A Practical, Targeted, and Stealthy attack against WPA-Enterprise WiFi

A. Cassola W. Robertson E. Kirda G. Noubir

College of Computer and Information Science, Northeastern University

NDSS 2013
Table of Contents

WiFi Today

Prototype

Evaluation

Questions
WiFi is important:

- Main access method to the Internet
- Millions of people use it at home
- Organizations provide it for employee network access

Threats:

- Eavesdropping, tampering
- Rogue Access Points (Evil Twins)
- Jamming
Eavesdropping

- WEP (RC4 static key 1999) first broken 2001 allowing key recovery
- WPA CCMP (AES dynamic key, 2002) as secure as AES
- PSK: HMAC-SHA1 based functions

\[K = \text{PBKDF2}(SSID||PSK, 4096, 256) \]

\[K_t = \text{PRF-512}(K, MAC_{AP}, MAC_{C}, N_{AP}, N_{C}) \]

- Enterprise: Master key derived from protocol interaction: typically client TLS or MSCHAPv2 over TLS (PEAPv0)
Rogue APs trick users into connecting, but

- Competition for client attention, limiting range
- Techniques like WiFi Protected Setup: physical interaction
- RADIUS servers use signed certificates

Jamming can disrupt communication

- 802.11 NIC firmware protected by vendors
- Improvements in Physical Layer limit range
Is WiFi Ok?

No, it is not

- We can get your password in hours to days
- It will look like an everyday glitch
- Only you will be the target
- Inexpensive ($4, 500 or less)

We will show:

- Current isolated protections are not enough
- Flaws across the stack can be exploited together for maximum effect
- WiFi security needs a more solid foundation to build upon
Rogue AP

- Pose as legitimate member AP of network
- Client connects
- Client accepts certificate
- Listen to and breaks MSCHAPv2

However:

- Client selects “best” AP according to some measure, e.g. received power
- RADIUS servers identify themselves with TLS certificates
- Clients record FQDN of RADIUS server first time
- RADIUS certificate by other names will be refused
Forcing a new profile

System is open during new network setup:

- SSID is linked to RADIUS
- Using a different SSID forces a new network entry in client
- OS GUIs do not display SSID non-printable characters
- Use SSID + control-char

However:

- Repeated entries in table
- What to do? Jam legitimate network
Jamming

What the jammer must do:

▶ Decode 802.11 frames from clients
▶ When client scans for networks, jam probes before they reach other devices

\[
\begin{align*}
t_d &= \text{detection} \\
T_T &= \text{Turnaround}
\end{align*}
\]

How fast?

▶ WPA-Enterprise Probe Requests typically \(\sim 1\text{Kbit long}\)
▶ Clients probe at lowest rate for discovery: 1Mbps
▶ Up to 1ms transmission time
Power benefits:

- A naïve Rogue AP must outpower legitimate ones
- We only need to or mangle packets or trigger the NIC’s Energy Detector (−80 to −70 dBm from standard doc vs outpowering −30 dBm from afar)
- High gain antennae can increase range even more

Stealth benefits:

- A 802.11-aware jammer can act on specific frame fields
- Can target individual MAC addresses, invisible to others
- Source MAC address at byte 10 means 80μs delay to jam at 1Mbps
Jamming (cont.)

Jammer pseudocode:

```plaintext
function jammer(VMAC, SSID):
    // precompute response train
    packet = build_frame(PROBE_RESP, SSID, VMAC, local_MAC)
    response_sig = 80211_modulate([[packet, packet, ...]])

    loop:
        if frame_match(VMAC) == MATCH:
            switchTx(on)
            Tx(response_sig)
            switchTx(off)

function frame_match(MAC):
    loop: // move to src address field in responses
        if frame_type(80211_demodulate(radio_in)) == PROBE_RESP:
            plcp_toByte(SRC_ADDR)
            break

    for i = 1...addrlen: // record address
        addr[i] = plcp_nextByte()

    if addr == MAC:
        return MATCH
    else:
        return NO_MATCH
```
Certificates

Setup requires human intervention to accept certificate:

1. Build an inconspicuous self-signed cert., emulating behavior of vendors
2. Show legitimate RADIUS cert. \(n - 1 \) times, then our own
 - First attempts will be inspected and accepted, but TLS fails
 - With \(n \) such that a user will accept last certificate at a sufficiently high probability
WPA-Enterprise networks use MSCHAPv2 for user authentication

- Widely deployed
- Integrates well with existing infrastructure
- Believed to be sufficiently safe when performed over a secure channel (TLS)

\[C_1 = \text{SHA1}(\text{User-Id}, \text{Server-Challenge}, \text{Client-Challenge}) \]

NT Hash
\[|K_1| = 56\text{bit} \quad |K_2| = 56\text{bit} \quad |K_3| = 16\text{bit} + \text{pad} \]

Client-Challenge, \(\text{DES}_{K_1}(C_1) \), \(\text{DES}_{K_2}(C_1) \), \(\text{DES}_{K_3}(C_1) \)
Putting it together

Client

Victim AP, SSID

Network

Attacker
RADIUS + RogueCert

SDR + Directional Antenna

1. Probe Request
2. Probe Response, SSID*
3. Jammed
4. ProbeResponse, SSID*
5. Association
6. TLS Hello
7. Cert
8. Key Exchange (Fail)
9. RogueCert
10. Key Exchange (Success)
11. MSCHAPv2

0. Disassociate
Implementation

Software-defined Radio:

- Software implementation of radio signal processing
- Includes software API and libraries to develop own processing blocks
- Third party code
- Relatively inexpensive hardware (e.g. Ettus’ USRP family) available
- GNURadio SDR uses python, C++ for development: speed, ease
- Easier than building chips, RF and firmware

Disadvantages:

- Passing signals to host CPU for processing introduces delay
- 802.11 22MHz channel requires higher sampling rate of USRP2 ($1,500) and later
Prototype

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Desktop Core 2 Quad 4GB RAM</td>
<td>$580.00</td>
</tr>
<tr>
<td>2 USRP2 boards</td>
<td>$3,000.00</td>
</tr>
<tr>
<td>2 RFX2400 boards</td>
<td>$550.00</td>
</tr>
<tr>
<td>1 802.11b/g/n router</td>
<td>$66.00</td>
</tr>
<tr>
<td>1 Parabolic grid ant.</td>
<td>$47.99</td>
</tr>
<tr>
<td>1 Standard TLS certificate+domain</td>
<td>$178.47</td>
</tr>
<tr>
<td>Total</td>
<td>$4,422.46</td>
</tr>
</tbody>
</table>
Testing reaction time
Testing reaction time
Range test

Ran 1,000 client trials per site, at 50m intervals, 19dBi gain antenna.

- Jam success: Only Rogue SSID appears at client

![Diagram showing Jamming and Association Success Probability vs Distance from Jammer (m)]
User Study

- Experiment room setup with prototype
- 17 users gave consent to be part of study
 - At least 5 participants had academic networking security background
 - All participants shared CS, Engineering background
- Task: connect to WiFi and browse (i.e. web search, captchas, following links)
- Users self-rated familiarity with computers and WiFi networks
- Debriefing after test
- Capture data anonymized and encrypted with AES-256
User Study Results

All users accepted Rogue Certificate, only one reported seeing a duplicated SSID.

User Self-Rated Familiarity

- Fam. with Computers
- Fam. with Wireless Networks

Confidence Rating (1 = Low, 10 = High)
Dictionary search 8-character alphanumeric yielded **two user passwords in three hours**

NTHASH in MSCHAPv2 can be broken with 1 DES key search

Cloud computing services (EC2) provide GPUs and OpenCL access for $2.10 per hour

Est. 10-day DES search with 1 EC2 large instance would cost little over $1,000
Conclusions

Lessons:

- Isolated defense efforts provide some measure of protection
- Flaws don’t stay isolated
- Even if UI design is not usually addressed as part of security, it has an effect
- A solid foundation to build protocols

Countermeasures:

- Trust relationship between SSID and RADIUS certificate crucial
- UI considerations: non-printable characters
- Move away from MSCHAPv2, strong-password protocols offer better guarantees
- Adopt secure-pairing techniques to limit vector of attack
Thank you