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Chapter Qutline

T this pdint, you may think you know all about hypothesis test-
ing. Hesg's a surprise: What you know will not help you much
as a psyghologist, Why? The procedures for testing hypotheses
describefl up to now were, of course, absolutely necessary pre-
requisitge for what you will now learn. However, these proce-
dures involved compgring a group of scores to a known population. In real
research practice, yofare oflen comparing two or more groups of scores to
each other, without afy direct information about populations. For example,
you may have two scofes for each of several people, such as scores on an anx-
iety test before and affer psychotherapy or number of familiar versus unfa-
miliar words recalled §n a memory experiment. Or you might have one score
per person for two gibups of people, such as an experimental group and a
control gronp in a study of the effect of sleep loss on problem solving.

These kinds of refearch situations are umong the most common in psy-
chology, where the oy information available is from the samples. Nothing
1s known about the pojulations that the samples come from. In particular, the
researcher does not knpw the variance of the populations involved, which is a
crucial ingredient in S§p 2 of the hypothesis-testing process (determining the
characteristics of the dpmparison distribution).
rst consider the solution to the problem of not know-
ce. We begin with a special hypothesis-testing situa-
tion, comparing the nan of 2 single sample 10 a population with a known
mean but an unknownfvariance. Then, having seen how this problem of not
knowing the populatich variance is handled, we 2o on to consider the situa-
tion in which there is §o known population at all—the situation in which all
we have are two scoredlfor each of a number of people.
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The hypothesis-testing procedures you leamn in thif chapter, in which the

t tests population variance is unknown, are examples of whaflare called ¢ tests, The
t test is sometimes called “Student’s " because its maif principles were orig-

inally developed by William 5. Gosset, who publisheq his articles under the

pame “Student” (see Box 9-1).

Box

] -and:*i“espeually to! find the canse of bad
batches. A_proper scientist would say, “Conduct
xpenments"’ But a busmess such as a brf;wery
ould not afford to, wasts money oIl eXperiments
, DIvmg large numbers of vats, some of which
any brf:wer worth his, hops knew would fail. So
GObSE-t— was forced to contemplata the probabxhty
. Of, say, a certain strain of barley producing terri-

*'only a few batches of each strain. Adding to the

pmblern waa. that he had no idea of the variability

(Does this sound fannlmr? Poor Gosset, ll.ke
today 5 psycholug1sts had no idea of h1s popula-
tmn § variance.) .

Gosset was up to the task althuugh at the titne

- p'roper brewer at all To his statistical colleagues,
i ainly at the Biometric Labmratury at University
Co]lege in Lnndnn, he was a mere brewer and not
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~ that could be applied to any

lel beer: whe:n the experiment could consist of

‘the backs of envelopes, wi

- bad batch!

a proper mathematician. In shprt, Gosset was the
sort of scientist who was not phove applying his
talents to real life.

In fact, he seemed to revelfin real life: raising
pears, fishing, golfing, builging boats, skiing,
cycling (and lawn bowling, affer he broke his leg
by driving his car, a two-seatef Model T Ford that
he called “The Flying Beds@ad,” into a lamp-
post). And especially he revefed in simple tools
g, simple formu-
las that he could compute in pis head. (A friend
described him as an expert cajpenter but claimed
that Gosset did almost all of Ris finer woodwork
with nothing but a penknife!)

S0 Gosset discovered thell¢ distribution and
invented the ¢ test—simplicityjtself (compared to
most of statistics}—for situatfpns when samples
are small and the variability of the larger popula-
tion is unknown. Most of hisfwvork was done on
plenty of minor
errors in arithmetic that he haf to weed out later.
Characteristically, he publishdt his paper on his
“brewery methods™ only whenleditors of scientific
jownals demanded it: To thigjday, most statist-
cians call the ¢ distribution “Sgudent’s ¢ because
Gosset wrote under the anonfmous name *Stu-
dent” so that the Guinness frewery would not
have to admit publicly that it spmetimes brewed a

Refercnces: Petets (1987); Stigler (1380);
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INTRODUCTI@N TO THE t TEST:
THE t TEST FQR A SINGLF SAMPLE

We begin with the fpllowing situation: You have scores for a single sample
and you want to cofhpare this to 4 population for which you know the mean
but not the variancefHypothesis testing in this situation is called a £ test for g
single sample. (It iqalso called a “one-samplc  test.”) The 7 test for a single
sample wotks basiclly the same way as you learned in Chapter 7. There are
only two important §ew wrinkles: First, since you don’t know the population
variance, you have tf estimate it. Second, when you have to estimate the pop-
ulation variance, thefshape of the comparison distribution is slightly different
from a normal curve

An Example

Suppose that your clege newspaper reports an informal survey showing that
students at your schqpl study an average of 2.5 hours each day. However, you
think that the student in your dormitory study much more than that, You ran-
domiy pick 16 studehts from your dormitory and ask them how much they
study each day. (WeJwill assume that they are all honest and accurate.) Your
result is that these 1¢ students study an average of 3.2 hours per day. Should
you conclude that the students in your dormitory study more than the college
average? Or should ybu conclude that your results are so close to the college
average that the smalf difference of .7 hours might well be due to your having
accidentally picked 1 of the more studious residents in your dorrnitory?

Step ] of the hyppthesis-testing process is to restate the problem in terms
of hypotheses about fopulations. There are two populations:

Population 1: Te kind of students who live in your dormitory
Population 2; The kind of students at your college generally

The research hypothekis is that Population 1 students study more than Popu-
lation 2 students; the null hypothesis is that Population 1 students do not
study more than Popilation 2 students. So far the problem is no different
from Chapter 7. '

Step 2 is determiffing the characteristics of the comparison distribution.
s mean will be 2.5, e figure the survey found for students at your college
generally (Populationf?).

The next part offStep 2 is finding the variance of the distribution of
means, With the currefit example, we Face a new kind of problem. So far, you
have always known tH variance of the population of individuals. Using that
variance, you then fighred the variance of the distribution of means. In this
example, the variancefof number of hours studied for the coliege as a whole
was not reported in the newspaper article. So you phone the paper. Unfortu-
nately, the reporier d not calculate the variance, and the original survey
results are no longer afailable. What to do?

Basic Principle of th{  Test: Estimating the Population
Variance From the Sdmple Scores

If you do not know thefvariance of the population of individuals, you can esti-
mate it froin what you Ho know: the scores of the people in your sample.

! test for a single sample

Introduction to the r Test: The ¢ Test for a Single Sample 255
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In the logic of hypothesis testing, the group of pepple we study are con- h;" % the
sidered to be a random sample from a particular popufation. The variance of | 500

this sample ought to reflect the variance of that populftion. If the population -
i has a lot of spread (there is a lot of variance in the scogs), then a sample ran- - ; ang
i domly selected from that population should have a Totfpf spread; if the popu- 31! Th
lation is very compact, with little spread, there shouldfhot be much spreadin | po|

the sample either. Thus, it should be possible to use thefspread of the scores in 3 E o

the sample to make an informed pusss about the sprafd of the scores in the 1 col
population. That is, we could compute the variance §f the sample’s scores : i i yol
and that should be similar to the variance of the scores o the population. (Sec =[] tio
Figure 9-1.) e tes
There is, however, one small hitch. The variance §f a sample will gener- . bot

ally be slightly smaller than the variance of the popul®lion the sample comes i
biased estimate from. For this reason, the variance of the sample 1s a Biased estimate of the ' var
population variance. _ - the
Why is the sample’s variance slightly smaller tharfthe population’s? The Fi mc
variance 15 based on deviations [fom the mean. A pdpulation’s varance is ase
based on deviations from that population’s mean. Howver, the variance of a S
sample is based on deviation’s from that sample’s medn. A sample’s mean is SCC
the optimal balance point for its scores. Thus, deviatiofs of a sample’s scores ;) stil
from its mean will be smaller than deviations from ghy other number. The R the
mean of the sample generally is not exactly the same 2 the mean of the pop- fi.  the

ulation it comes from. Consequently, deviations of afsample’s scores from

FIGURE %-1

Variance in samples and the populations they are taken from.
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the sample’s mean wil! generally be smalier than deviations of that sample's
scores from the popifation mean.

Suppose you kngw the mean of the population the sample ¢omes from
and used this mean fo compute the deviation for each score in the sample.
The variance calcnldged in this way would be an unbiased estimate of the
population variane

Unfortunately, ypu do not know the mean of the population the sample
comes from. The sar§ple comes from Population |, In the present situation,
you only know the nfean of Population 2. But the means of the two popula-
tions are the same onfly if the null hypothesis is true—and that is what we are
testing. (Regardless f whether the null hypothesis is true, we do assume that
both populations havf the same variance.)

Fortunately. youfcan compute an unbiased estirnate of the population
variance. What we dd is make a cottection in figuring the variance based on
the sample scores thit exactly accounts for the degree to which a sample’s
mean tends to vary fom the true population mean. You compute this unbi-
ased estimate by slightly changing the ordinary variance formula. The ordi-
nary way to figure th variance is to take the sum of the squared deviation
scores and divide thispy the number of scores. In the changed procedure, you
stll take the sum of tRe squarcd deviation scores, but you divide this sum by
the number of scoresgninus 1. Dividing by a slightly smaller number makes
the result of dividing §he variance) slightly bigger.

It turns out that dfviding by the number of scores minus 1 increases the
resulting variance jus§enongh to make it an unbiased cstimate of the popula-
tion variance. “Unbiaged,” incidentally, does not mean that your estimate will
be exactly the true pppulation variance. It only means that an estimate is
equally likcly to be o high as it is to be too low. (The biased estimate—the
sample variance compted in the usual way—will be systematically too low.)

The symbol for thq unbiased estimate of the population variance is §2. The
formula is the usval ffmula, but with the division by N -1 instead of by N:

N=1 N=1

The estimated porfilation standard deviation is the square root of the esti-
mated population varifnce:

57

Let us return to opr example of hours spent studying and compute the
estimated population fariance using the sample’s 16 scores. First, we com-
pute the sum of squardd deviation scores. (Subtract the sample’s mean from
each of the scores, squbire those deviation scores, and add them.) Let us pre-
sume you do this and ifcomes out to 9.6 (55 = 9.6). To get the estimated pop-
ulation variance, you pivide this sum of squared deviation scores by the
number of scores in the sample minus 1. There are 16 in the sample, so the
number in the sample rfinus 1 is 15. The result is .64. That 15,9.6/1515 .64. In
terms of the fonmnia, :

(%-2)

SQZE(X—M)ZZ SS _ 96 _96
N-1 [N-1"16-1 15

b4

unhiased estimate of the
population variance
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Degrees of Freedom

The number you divide by (the number of scores mi
mated population variance has a special name. It is

freedom because it is the number of scores in a sampl

This is a somewhat complicated notion. The basic ide
the variance, you first have to know the mean. If yd
all the scores in the sample but one, you can Gpure
know with a little arithmetic. (If you are mathema
this out with some examples to see how it works.) T!
mean, one of the scores in the sample is not free to hj
5o the degrees of freedom is the number of scores
formula,

df=N~1

where df is the degrees of freedom. Tn our example, df
situations, which you will learn about in later chapte
dom are figured a bit differently. This is becanse
number of scores free to vary is different. For all the si
df=N-1))

The formula for computing the estimated popul
written wsing df instead of N — 1:

o 3x-m)?* _ss
T4t df

Determining the Standard Deviation of the Distril
From an Estimated Population Variance

Once you have estimated the population variance, cf
deviation of the comparison disiribution involves the
learned in Chapter 7. That is, think of the comparison
bution of means. As before, we can figure its variancyg
population of individuals divided by the sample size.
that instead of knowing the variance of the population
had to estimate it. As usual, the standard deviation
means is the square root of its variance. Stated as fo

Note that when we are using an estimated population
for the variance and standard deviation of the distrib
instead of o.

In our example, the sample size was 16, and the est
ance we just worked out was .64, The variance of the
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s 1) to figure the esti-
alled the degrees of
that is “free to vary.”
is that, when figuring
know the mean and
ut the one you don’t
ally adventurous, try
8, once you know the
& any possible value,
inug 1. Tn teems of a

(9-3)

16—1=15 (Insome
E, the degrees of free-
these sitnations the
ations in this chapter,

ion variance is often
(9-4)

tion of Means

mputing the standard
same procedures you
listribution as a distri-
as the variance of the
['he only difference is
of individuals we have
of the distribution of
i1as,

{9-5)

(9-6)

ariance, the symbols -

ition of means use S,

ated population vari-
distribution of means

.85 14

bas
sta

Lat

esl



ne
-
he

en- ]
ten :

9-6)

FPT-487d TSTS S48 AT9

based on that estim
standard deviation i

€, will be .04. That is, .64 divided by 16 equals .04. The
.2, the square root of .04. In terms of the formulas,

04

Be careful. To
divide the populatio
population variance
the population van
making the estimate
size minus 1. That is
the variance of the p.

d the variance of a distribution of means, you always
variance by the sample size. This is true whether the
known or only estimated. In our example, you divided
ce, which you had estimated, by 16. It is only when
f the population variance that you divide by the sample
the degrees of freedom are used only when estimating
ulation of individuals.

The Shape of the C
an Estimated Popul

parisen Distribution When Using
ion Variance: The ¢ Distribution

In Chapter 7, we sai
lation distribution fo
means will also foll
hypothesis testing v
using an estimated p
there is more room f
are slightly more like.

at so long as it 1s reasonable to assume that the popu-
ows a normal curve, the shape of the distribution of
a normal corve. This changes when we are doing
ng an estimated population variance, When we are
pulation vatiance, we have less true information and
error. The mathematical effect is that extreme means
than would be found in 2 normal curve. Further, the
i7¢, the bigger this tendency. This is because you are
on variance on the basis of less information.

pf all this when doing hypothesis testing using an esti-
sult is that the distribution of means (your comparison
llow an exact normal curve. Instead, the comparison
athematically defined curve called a ¢ distribution,
manry ¢ distributions. They vary in shape according to
for the sample used in estimating the population vari-
ance. (However, for afly particular degrees of freedom, there is only one ¢
distribution,) Generally, all : distributions look to the eye like a normal
curve—bell-shaped, cqmpletely symmetrical, and unimodal. A ¢ distribution
differs subtly in haviflg heavier tails (that is, slightly more scores at the
extremes). Figure 9-2 $hows the shape of a 7 distribution compared to a hor-
mal curve,

mated variance? The
distribution) will not
distribution follows a

Actually, there ar
the degrees of freedor

FIGURE 9-2

SI20

{ distribution

The 1 digtribution ¢compared to the normal curve.
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This subtle difference in shape affects how extrerfe a score you need to :
reject the null hypothesis. To reject the null hypothesif you need to be in an wl
extreme section of the normal eurve, such as the rop §%. However, if there co
are more extreme scores, the point where the top 5% tgins is further out on i €a
the curve. Thus, it takes a more extreme sample megn to get significance | A {
when using a ¢ distribution than when using a normal cprve. : | th
Just how much the ¢ distribution differs from the jormal curve depends ¥
on the degrees of freedom in estimating the populationgvariance. The ¢ distri- 1! the
bution differs most from a normal curve when the estifhate of the population i the
variance is based on a very small sample, so that the dgrees of freedom are jaal
low. For example, using the normal curve, the cutoff Jor a one-tailed test ar or
the .05 level is 1.64. On a ¢ distribution with 7 degreds of freedom (that is, (It
with a sample size of 8), the one-tailed, 5% cutoff is [B95. If the population at
variance estimate is based on a larger sample, say a sarfiple of 25 (so that df = on
24), the cutoff is 1.711. If your sample size is infinire, fhe ¢ distribution is the
same as the normal curve. (Of course, if your sampl§ size were infinite, it the
would include the entire population!) But even with Jample sizes of 30 or fiv
more, the ¢ distribution is nearly identical to the normafjcurve. iny
Before going on to learn how you actually find thefeutoff using a # distri- ust
butiomn, let us first return briefly 1o our example of thegnumber of hours that eX.
students at your dorm study each night. We finally hage everything we necd do
to complete Step 2 about the characteristics of the cofpparison distributicn.
We have already seen that the distribution of means wjll have a mean of 2.5 D«
hours and a standard deviation of .2. Based on what wg have just discussed, on
we can now add that the shape of the comparison distifbution will be a ¢ dis-
tribution with 15 degrees of freedom.! Ste
the
Determining the Cutoff Sample Score Zs
for Rejecting the Null Hypothesis: Using the f Tablg
Step 3 of the hypothesis-testing process is determining the cutoff for reject- E
ing the null hypothesis. There is a ditferent r distribujon for any particular (St
number of degrees of freedom. However, to avoid takige up pages and pages —
with tables for each possible ¢ distribution, a simpliffed table is nsed that
t table gives only the crucial cutoff points. We have included such a ¢ table in df
Appendix B (Table B-2). ;
3
4
IStatisticians make o subtle distinetion in this situation between tfe comparison distriburion 3
and the disoribution of means. We have avoided this distinction hee and in later chapters in b
order to greatly simplify the discussion of what is already fairly difffcult. If you are interested, 7
the distinction can be underslaod as follows: The general procedufle of hypothesis tosting, as 8
we introduced it in Chapter 7, can be deserihed as comparing a Z scpte to your sample’s mean, 9
where Z= (M - pV @, and where o, = %¥g%N, and then compudny this Z seore 1o a cutoff 10

Z score from the normal curve table, We described this process g using the distribution of
mieans as your comparisen distribution, .
Statigticians would say that actually you ars comparing your cfmputed Z score to a distis
bution of Z scores (which it simply a standard normal curve). Simglarly, in the casc of a ¢ test,
statisticians think of the procedure as compuling a ¢ score (like 2 Zscore but calenlated using
an estimated standard deviation)where 1 = (M — W)/S,,, where 58= V5 /N—and then com-
paring your computed ¢ seore 1o & cutoff { seore from 21 distributich table. Thus, according 19
the formal statistical logic, the comparison distribulion is a distfgbution aof ¢ scorcs, not O
means.

260 The! Test for Dependent Means




In the present eample, you have a onc-tailed test (you are interested in
whether students infyour derm study mere than students in general at your
college). You will prgbably want to use the 5% significance level because the
cost of a Type T errof (mistakenly rejecting the null hypathesis) is not great.
You have 16 particigants, making 15 degrees of frecdom for the estimate of
the population variaee.

Tablc 9-1 showsg portion of a ¢ table like Tablc B-2. Find the column for
the .05 significance Bvel for one-tailed tests, then move down this column to
the row for 15 degre}s of frecdom. The ¢rucial cutoff number is 1.753. This

[ A

;‘ means that you will gject the null hypothesis if your sample’s mean is 1.753
it or more standard defations above the mean on the comparison distribution.
: (If you were using a ¥nown variance you would have found your cutoff from
I a normal curve tabled The Z score needed to reject the null hypothesis based
- on the normal curve Yould have been 1.645)
e One other point gbout using the # table. In the full ¢ table in the appendix,
it # there are rows for eagh degree of freedom from 1 through 30, then for every
o ¥ - five degrees of freedqom (33, 40, 45, etc.) up to 100. Suppose your study
Al involves degrees of fleedom in between two values, To be safe, you should
i use the nearest degreds of freedom below yours that is given on the table. For
at ¥ example, if you wereldoing a study in which there were 43 degtees of free-
d ¥ dom, you would use ghe row in the table for 40 df
3 L Determining the Scgre of the Sample Mean
';L - on the Comparison Pistribution: The ¢ Score
1 Step 4 of the hypotheqs-testing process is determining your sample’s score on
1 the comparison distri§ution. In previous chapters, this has meant finding the
Zscore on the compagson distribution—the number of standard deviations it
TARLE 9.1
at- [l . Cutoff Scores for ¢ Disfibutions with 1 Through 17 Degrees of Freedom
lar ¥ (Shawing Cutoff for Hjpurs Studied Example)
;zst HE One-Taled Tests ' Two-Tailed Tests
in ! df A0 . Nl Jo 05 01
1 3.078 6314  31.821 6.314 12706  63.657
2 . 1.886 2,920 6.963 2.920 4.303 9.925
3 . 1.638 2453 454 2.353 3.182 5841
4 1.532 2.1B2 3.747 2,132 2.776 4.604
ion 5 1476 2415  3.365 2015 2571 4032
s in G 1440 1413 3143 1.943 2447 3708
ted, 7 1415  1.4p5 2,998 1.895 2365 3.500
. A8 8 1.397 1, 2.897 1860 2.306 3.356
xan, 9 1.383 1.883 2.822 1.833 2.262 3.250
totf 10 1.372 1.43 2,764 1.813 2.228 3170
1 of I 1.364 1§ 2.718 1796 2201  3.106
iy 12 1.356 1'% 2681 1.783 2.179 3.0585
el 13 1350 1, 2651 1771 2161 3,013
sng 14 1.345 L 2.625 1762 2,145 2977
o 15 1341 17§ 2.603 1753 2132 2947
gt 16 1.337 1, 2.584 1.746 2.120 282]
it of 17 1.334 L7340 2.567 1.740 2110 2.898
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is from the mean on the distribution of means. You do pxactly the same thing
when your comparison distribution is a ¢ distribution. fThe only difference 18
that in the past, when the comparison distribution wds a normal curve, the
score we computed on it was called a Z score. Now, wd are using a z distribu-
tion as our comparison distribution. Thus, the score w@ compute on it we ¢all
at score. In terms of a formula,

(9-7)

the distribution of means, This amounts to 3.5 standafd deviations from the
mean (that is, .7 hours divided by the standard deviaon of .2 hours equals

Determining Whether to Reject the Null Hypothegs

Step 5 of hypothesis testing is comparing the scores from Steps 3 and 4 to
decide whether to reject the null hypothesis. This stdp is exactly the same
with a ¢ test as it was in previous chapters. You comparf the cutoff score from
Step 3 with the sample’s score on the comparison distrjpution from Step 4. In
our example, the cutoff # score was 1.753 and the actual¢ score for our sample
was 3.5. Conclusion: Reject the null hypothesis; the repearch hypothesis that
students in your dorm study more than students in th§ rest of the college is
supported.

Figure 9-3 shows the distributions for this examplg

Summary of Hypothesis Testing
When the Population Variance Is Not Known

Hypothesis testing when the population variance is ndg known is exactly the
same as in Chapter 7, with four exceptions: (a) Instead pf the population vari-
ance being known in advance, it is estimated from the fample (using the for-
mula for the unbiased estimate, $? = S5/df); (b) instgad of the comparison
distribution following a normal curve, it is a ¢ distributgn with df equal to the
number of scores in your sample minus 1; (¢) instead oflooking up the signif-
icance cutoff point on a normal curve table, you usefla ¢ table; and (d) the
score of your sample on the comparison distribution, ifktead of being called a
Z score, is called a f score, Table 9-2 systematically cqmpares the two situa-

tions.

Another Example of a Single-Sample  Test

Consider another fictional example. Suppose a researgher was studying the
psychological effects of a devastating flood in a srfall rural commumnity-
Specifically, the researcher was interested in whethef people felt more of
less hopeful after the flood. The researcher randomly selects 10 people t0
complete a short questionnaire. The key item on the qfestionnaire asks these

P.18-14




g . FIGURE %.3
is Distribytions involved in the hours studied example.
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1at TABLE 9-2 |
P18 - Hypothesis Testing Ingblving a Single Sample Mean When Population
j Variance Is Unknown ¥ Test) Compared to When Population Variance Is
Known
\;\-ﬁ .
p Difference From When
Population Variance
- Steps in Hypothesis Tesfing Is Known
§5° 1. Restate the question adla research »  Nodifference in method,
th'c g} hypothesis and & null Bypothesis
. | about the populationg,
::)1‘- 5. 2. Determine the charactdistics
son of the comparison dist§bution;
thﬂ Population mean No difference in method.
afe C .
the Population variance Estimate from the sample. ’
da Standard deviation No difterence in method (but
ua- of the disttibution offsamplc buscd on estimated popuiation . ‘
means variance). !
Shape of the compagson Use the ¢ distribution with I%
distribotion df=N-=1, I
" 3. Determine the significace cutoff. Use the rtable, ‘
the : . ‘
it 4. Determine your samplds score No difference in method ‘
; gr on the comparizon distfbution. (but called g ¢ score).
; o j J. Compare the scores in $teps 3 and 4 to No difference in method, , “
ese . decide whether to rejecfthe null hypothesis, ‘
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individuals to rate how hopeful they feel using a 7-pofut scale from extremely
unhopeful (1) 10 neutral (4) to extremely hopeful (P. Table 9-3 shows the
results and computation for the ¢ test for a single safiple; Figure 9-4 shows
the distributions involved. : ‘

The researcher was interested in whether the resfonscs would be consis-
tently above or below the midpoint on the scale (4§ Here are the steps of
hypothesis testing.

1. Restate the question as a research hypothegis and a null hypothe-
sis about the populations. There are two population

Population 1: People who experienced the floog
Population 2: People who are neither hopeful ngr unhopeful

The research hypothesis is that the two populations will score differently. The
null hypothesis is that they will score the same.

2. Determine the characteristics of the comphrison distribution. If
the null hypothesis is true, the mean of both populftion distributions is 4.
However, the variance of these population distributio§s is not known; it must
be estimated from the sample. As shown in Table 9-3Rthe sum of the squared
deviations from the sample’s mean is 32.10. Thus, te estimated population
variance is 3.57: that is, 32.10 divided by 9 degregs of freedom (10 — 1)
equals 3.57.

TABLE 9-3 ]
Data and Analysis for a Single-Sample ¢ Test for a Study of 10 People’s Ratings
of Hopefulness Following a Devastating Flood (Fiction§ Pata)

Difference Squmred Difference
Rating I'rom the Mesn Fom the Mean
(X) (X-M) (X =M)!
3 3 .09
3 -1.7 2.89
6 1.3 1.69
2 -27 7.29
7 23 5.29
§ 1.3 1.69
7 23 5.29
4 -7 A9
2 =27 7.29
5 3 .09
Z 47 o 32.10

CM=ZLZXIN=41110=4.7,
df =N-1=10~1=0.
p =40
3 = 858/df=32.10/(10 - 1) =32,10/9 =3,57,
S,f,= SHN=357/10=36.
8., =82 = V.36 = .60.
t with df = 2 needed [or 1% sigmifoeance level, two-lailed = 3,250,
Actual sample £ (M - )5, ={(4.7-4)/.6=.7/6=1.17.

Decision: Do not reject the null hypothesis,
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following a devastating Aood.

The distribution ¢f means will have a mean of 4 (the same as the popula-
tion mean). Its variagke is the estimated population variance divided by the
sample size=-3.57 difided by 10 equals .36. The square root of this, the stan-
dard deviation of the §istribution of means, is .60,

3. Determine th§ cutoff sample score on the comparison distribution
where the null hypofhesis should be rejected. The researcher wants to be
very cautious about ristakenly concluding that the flood made a difference.
Thus, she decides to fst the hypothesis at the .01 level. The hypothesis was
nondirectional (that if no specific direction of difference from the mean of 4
was specified; either fesult would have been of interest), so the researcher
uses a two-tailed test] The researcher looks up the cutoff on Table 9-1 (or
Table B-2 in Appendif B), for a two-tailed test and 9 degrees of freedom. The
figure on the table js p.250. Consequently, to reject the null hypothesis the
researcher needs a r off3.250 or higher or a t of —3.250 or lower.

4. Determine thsample’s score on the comparison distribution, The
sample’s mean of 4.7 f .7 scale points from the null hypothesis mean of 4.0.
That makes it 1,17 stghdard deviations on the comparison distribution from
that distribution’s mea (. 7/.6 = LI7);¢=1.17. ,

5. Compare the grores from Steps 3 and 4 to decide whether to reject
the null hypothesis, The z of 1.17 is not as extretme as the needed rof £3.250.
Therefore, the researgher cannot reject the null hypothesis. The study is
inconclusive, (If the refearcher had used a larger sample, giving more power,
the result might have Hen quite different )

TSTS S48 AT9 SI20
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Distributions involved in the example of how hopeful individuals feit
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TABLE 9-4 i ite
Steps for Conducting a ¢ Test for a Single Sample , me
1. Restate the question as a research hypothesis and a null hygothesis about the popu- dej
lations. | fer

et tws

2. Determine the ;:haracteristics ol the comparison distribubich,
a. The mean is the samc as the known population mean.
b. The standard deviation is computed as follows:
i. Compute the estimated population variance: 57 = S,
ii, Compute the variance of the distribution of means: §# = S%/N.

{ii. Compute the standard deviation: 5, =V55.

¢. The shape will be a ¢ distribution with N— 1 degrees of feedom.

3. Determine the cutoff sample score on the comparison distrgpution at which the nuil
hypothesis should be rejected.

a. Determine the degrees of freedom, desired significancejevel, and number of Lals
in the test (one or twa).

b. Look up the appropriate cutoff in a f table.
4. Determine your sample's score on the comparison distribukon: 1= (M — £}/5,.

5. Compare the scores from Steps 3 and 4 to decide whether gr not to reject the null
hypothesis. :

Summary of Steps for Conducting a t Test for a Single Sample

hen you have scores
ean but an vnknown

Table 9-4 summarizes the steps of hypothesis testing
from a single sample and a population with a known
variance.

THE f TEST FOR DEPENDENT MEANS

So far we have considered examples where you kno
but not its variance. This type of research sitzation
you do not even know the population’s mean! We tur
research situation in which you know neither the p
variance. This kind of situation involves studies in whi
for each of several people. For example, a psychophys
the pattern of EEG activity (“brain waves™), comparin
son while doing abstract tasks versus concrete tasks.
setup where each person is measured more than one
measures design. (It 13 also known as a “within-subje
dix A for a summary of the major types of research de

In one widely used repeated-measures design you
viduals before and after some psychological or social i
ple, an organizational psychologist might measure day
80 workers before and after a new health promotion p

In this common situation of a repeated-measur
person is measured twice, the hypothesis-testing pro

the population mean
fairly rarc. Usnally,
now o one common
ulation mean mor its
h there are two scOres
logist might measure
the EEG for each per-
his kind of research
is called a repeated-
s design.” See Appen-
gns)
easure the same indi-
tervention. For exam-
missed from work for
ETaTT Was introduced.
design, where cach
dure used is called 2
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¢ test for dependent means, It has the name “dependent means™ because the
means for each group of scores (e.g., before scores and after scores) arc
dependent on each other in that they are both from the same people. {In Chap-
ter 10, we consider the sitvation in which a researcher compares scotes from
two different groups of people, a research design analyzed by a “f test for
independent means.”)

The ¢ test for dependent means is exactly the same as the ¢ test for a single
samiple, except that (a) you use something called difference scores and (b)
you assume that the population mean is 0. Let us turn now to each of these
new features.

Difference Scores

With 2 repeated-measures design, our sample includes two scores for each
person instead of just one. The way we handle this is 10 make the two scores
pet person into one score per person. We do this magic by creating difference
scores: For each person you subtract one score from the other.

Consider the EEG example. For each person the psychophysiologist
would do a subtraction: the person’s EEG measure during the abstract task
minus the person’s EEG measure during the concrete task. This gives a single
abstract-minus-concrete difference score for each person. Similarly, consider
the absence-from-work example. The organizational psychologist would do
the following subtraction for each parson: the number of days missed after the
program minus the number of days missed before the program. This would
result in an after-minus-before difference score for each employee.

When the two scores are 2 before score and an after score, we usually
take the after score minus the before score. This gives a measure of change.
In othet situations, such as the EEG example, it really doesn’t matier which
you subtract from which——so long as you do it the same way for each person
in the sample.

Once you have the difference score for each person in the study, you do
all the rest of the hypothesis-testing procedure using the difference scores.
That is, you treat the study as if there were a single sample of scores—scores
which in this situation happen to be differente scores.’

Population of Difference Scores With a Mean of 0

8o far in this book, you have always known the mean of Population 2 (the
population you are contrasting your sample with). For example, in the college
dormitory survey of hours studied, we knew that the mean of the population
of students at the college overall was 2.5 hours. However, now we are using
difference scores, and we usually do not know the mean of the population of
difference scores.

*¥ou can also use a ¢ test for dependent means in a situation in which you have scores from
pairs of research participants, You consider each pair as if it were ane person and compute a
difference score for each pair. For example, suppose you have 30 married couples and you are
comnparing ages of husbands and wives to see if husbands are consistently older than wives.
You could compute for each couple a difference score of husband's age minus wife’s age. You
would then carry out the rest of the hypothesis testing the same way as any ather 7 test for
dependent means. When used in this way, the ¢ test for dependent means 15 sometimes called a
t test for marched pairs or a paired ¥ test.

Th
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f Lest for dependent means

fdifference scores
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FIGURE 9-5
Distributions for the Olthoff (1993) example of a ¢ test for dependent means.
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The solution is as follows: Ordinarily, the null hfpothesis in a repeated- w
measures design is that there is no difference berdgeen the two groups of ' co
scores. For example, the null hypothesis in the psychdphysiology study is that

EEQG activity will be the same when doing abstract ¢ concrete lasks, Simi- cr
larly, the null hypothesis in the health promotion study is that absences from in
work will be the same before and after the health profhotion program is intro- ' 11
duced. Thus, when using difference scores, we usuflly compare a research ‘ ev
hypothesis of a predicted difference to a null hypothests of no difference. s

t

Here is the key point: What does “no differencd” mean? Thart is, what de
does it mean to say that in the population there is on tife average no difference |

between the two scores for each person? It ig the sam as saying the mean of pli
the population of the difference scores is 0. In other Yords, saying that there wl
is no difference between the two scores is equivalentio saying that the aver-
age of the difference scores is zero. ' ‘

Therefore, when working with difference scores Jwe assume an attificial A
comparison population of difference scores that has § population mean of 0. tT

for

Example of a t Test for Dependent Means
Olthoff (1989) tested the communication quality pf engaged couples 3
months before and again 3 months after marriage. Orf group studied was 19
couples who had received ordinary premarital counsdling from the ministers Hu

who were going to marty them. (To keep the examplf simple, we will focus
on just this one group, and on only the husbands iff the group, Scores for
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L wives were similar, though somewhat more varied, making it a more compli-

of . cated example for learning the z-test procedure.)
at i The scores for the 19 husbands are listed in the “Before” and “After”
jm columns in Table 9-53, followed by the entire r-test analysis. (The distributions
i involved are shown m Figure 9-3.) The mean of the before scores was
- 116.316 and the mean of the after scores was 104.263. More important, how-
*h - ever, we have also figured the difference scores. The mean of the difference
5 scores 18 —12.05. On the average, these hushands’ communication quality
at decreased by about 12 points.
ce Is this decrease significant? In other words, how likely is it that this sam-
of ple of change scores is a random sample from a population of change scores
TR whose mean is 0? Let's carry out the hypothesis-testing procedure.
3=
il o TABLE 9-5 :
0. ¢ Test Analysis for Communication Quality Scores Before and After Marriage
for 19 Husbands Who Received No Special Communication Training
T Deviation of |
. : Differences
i3 Difference From the
19 ‘ Communication {After — Mean of Squared
o8 - Husband Quality " Before) Differences Devlation
cus Before After
for A 126 115 =11 1.05 1.1
B 133 125 - 8 4.05 10.4
C 126 86 - 30 ~17.95 33222
D 115 115 0 12.05 1452
E 108 119 11 23.05 5313
F 109 82 - 27 -14.85 233.5 |
G i24 03 - 31 -18.95 359.1
H 938 109 11 23.05 531.3
I 95 72 - 23 -10.95 119.9
J 120 104 e Li] - 395 15.4
K 118 107 -1 1.05 1.1
L 126 113 - 8 405 l6.4
M 121 102 -19 - 6.95 48.3
N 116 115 - 1 11.05 122.1
0 a4 23 - 11 1.03 1.1
P 105 87 - 13 - 5.95 354
Q 123 121 -2 10,05 101.0
R 125 100 - 25 -12.95 167.7
] 123 118 - 10 2.05 42
p 2,210 1,981 229 2,7729 I

For difference scores: .
M=-229/19=-12.05. .
w = O (assumed as a no-change baseling of comparison).
8 = 8§8/df=2,772.9/(19- 1) = 154.05.

Sf} =8YN=154.05/19=8.11.

§,=V5;=V8.11=285

t with df = 18 neaded for 5% level, two-tailed = +2.101,
I={M=- u)ISM ={-12.05-0)/2.85 =-4.23,

Decision: Reject the nul] hypothesis.
Note, Data from Oltholf (1989).

¢ Test for Dependent Means 269
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1. Restate the question as a research hypothegis and a null hypothe-
sig about the populations. There are two populatio

Population 1: Husbands who receive ordinary gremarital counseling
Population 2: Husbands whose communicatiorfquality dogs not change
from before to after marriage

The research hypothesis is that Population 1 is differfnt from Population 2— - 1
that husbands who receive ordinary premarital courgeling (such as the hus- " :
bands Olthoff studied) do change in communicatio§ quality from before to M
after marriage. The null hypothesis is that the populafions are the same—that = ‘
the husbands who receive ordinary premarital counfeling de not change in
their communication quality from before to after magiage.

Notice that we have no actual information aboufPopulation 2 husbands.
The husbands in the study are a sample of Populdfion 1 husbands. If the
research hypothesis is correct, Population 2 husbarfls may not even really
exist. For the purposes of hypothesis testing, we set Jp Population 2 as a kind
of straw man comparison group. That is, we set up p comparison group for
purposes of the analysis of husbands who, if measur§d before and after mar-
riage, would show no change.

2. Determine the characteristics of the comparison distribution. If
the null hypothesis is true, the mean of the populatioh of difference scores is
0. The variance of the population of difference scoreg can be estimated from
the sample of difference scores. As shown in Table §-5, the sum of squarcd
deviations of the difference scores from the mean offthe difference scores is
2,772.9. With 19 husbands in the study, there are |8 degrees of freedom.
Dividing the sum of squared devialion scores by the gegrees of freedom gives
an estimated population variance of 154.05.

The distribulion of means (from this population f difference scores) will
have a mean of 0, the same as the population mean Jits variance will be the
estimated population variance (154.05) divided by the sample size (19),
which gives 8.11. The standard deviation is the squage root of 8.11, which is
2.83. Because Olthoff was using an estimated populdtion variance, the com-
parison distribution is a ¢ distribution. The estimate offfhe population variance
was based on 18 degrees of freedom, so this compdison distribution is a ¢
distribution for 18 degrees of freedom.

3. Determine the cutoff sample score on the eqnparison distribution
at which the null hypothesis should be rejected. (Qthoff used a two-tailed
test because there was no clear reason for predicting either an increase or 2
decrease in communication guality. Using the .05 significance level and 12
degrees of freedom, Table B-2 shows that to reject fhe null hypothesis you
need a ¢ score at or above +2.101 or at or below —2.1(§.

4. Determine the sample’s score on the corfparison distribution.
Olthoff’s sample had a mean difference score of —1p.05. That is, the mean
was 12.05 points below the mean of 0 on the distribufon of means. The stan-
dard deviation of the distribution of means that we cofpputed was 2.85. Thus,
the mean of the difference scores of ~12.05 is 4.23 stghdard deviations below
the mean of the distribution ol means. S0 Olthoff § sample of difference
scores has a f score of —4.23,

5. Compare the scores from Steps 3 and 4 to dgcide whether to reject
the null hypothesis. The ¢ of ~4.23 for the samplefof difference scores 18
more extreme than the needed 1 of +2.101. Thus, fve can reject the null

L o T o PR N = T o T

[N = - T T A T = TR R
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FIGURE %-6
Communication skills of wives given premarital communi-

cations training andiwives not given such teaining. (Based
on Qithoff, 1989.)

18 hypothesis. This suggests that Olthoff’s husbands are from a population in
ly G which husbands’ communication quality is different after marriage from
1l what it was before (it is lower).

Olthoff’s actual study was more complex. You may be interested to know
that they found that the wives also showed this decrease in communication
it quality after marriage. But a group of similar engaged couples who were
i given special communication-skills training by their ministers (much more

1112 than the usual short session) had no significant decline in marital communi-
. i cation quality after marriage (see Figure 9-6), In fact, there is now a great
“.15 i deal of research showing that marital quality of all kinds on the average
n # declines (e.g., Karney & Bradbury, 1997) and that inlensive communication
. # skills training can be very helpful in reducing or eliminating this decline
: (Markman et al., 1993).

il

he Another Example of a f Test for Dependent Means

91); Here is another example. A researcher is interested in the effect of noise on
e hand-gye coordination in surgeons. The researcher gives nine surgeons a
ce sltandard test qf haqd-eye coordination under both quiet and noisy condi-
at tions—not while doing surgery, of course..The prediction is that surgeons’

coordination is better under quiet conditions. (Ideally, any effects of practice

on or fatigue from taking the hand-eye coordination test twice would be equal-
fed ized by testing half the surgeons under noisy conditions first, and half under
ra quiet conditions first. See Appendix A for a discnssion of such “counter-

g balancing.”) _

ou H Table 9-6 shows the results for this fictional study. It also shows the cal-

culation of difference scores and all the other calculations for the 1 test for ' !
on. ol dependent means. Figure 9-7 shows the distributions involved. Here are the
C steps of hypothesis testing:

. 1. Restate the question as a research hypothesis and a null hypothe-
ws, 4 sis about the populations. There are two populations:

ow . . —

nce Population 1: Surgeons like those tested in this study

‘ Population 2: Surgeons whose coordination is the same under quiet and
ject noisy conditions .

S8 The research hypothesis is that Population 1's mean difference scores {quiet
wl . Minus noisy) is greater than Population 2°s, That is, the research hypothesis is

Thif ¢ Test for Dependent Means 2771
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TABRLE 9-6 - o
t Test for a Study of Hand-Eye Coordination in Which Nfine Surgeons Are
Measured Under Noisy and Quiet Conditions (Fictiona !
Squared - {
Surgeon Conditions Difference Devijtion Deviation -
Cuiet Nuoisy 1
l 18 12 & 6-24 lé (
2 21 21 0 -2 4 i
3 19 16 3 1 1
4 21 16 5 3 9 . ¢
5 17 19 -2 -4 16 ¢
6 20 19 1 -1 1 Sh t
7 18 16 2 0 0 |
2 16 17 -1 -3 9 %
9 20 16 4 2 4 (
b 170 152 18 jo 60 C
For difference scores:
M 1839 =20, .k
=0 (assumed as a no-change baseline of comparison), t
§1= 58/df= 60/(9-1)=60/B=75. €
Sk=S$YN="7.50/9 =83 . t
S, =VSE=V.E3 = 91, t

t for df = 8 needed for 1% significance level, one-tailed = 2.507.
t= (M~ I.L)/SM =(2.00-0).81 = 2.20.

Deeigion: Do not reject the null hypothesis.

FIGURE 9-7
Distibuticns for fictional stedy of hand-eye coordination under noisy and
quiet conditiong,

e
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that surgeons perform better under quiet conditions. The null hypothesis
that Population 1°s difference in performance is not highet than Populatio
2's. That 1s, the null hypothess is that surgeons do no better under quiet co
ditions.
2. Determine the characteristics of the comparison distribution.
the null hypothesis is true, the mean of the population of difference scores i
0. What is the variance of this population of difference scores? Estimatin
from the sample of difference scores, it is the sum of the squared deviation
of the difference scores from the mean of the difference scores, divided by th
degrees of freedom. This is shown in Table 9-6 to be 7.5. The comparison dis
tribution is a distribution of means. Its variance is the variance of the distriba
tion of individuals (in this case an estimated variance) divided by the sampl
i - size: 7.5/9 = .83. The standard deviation of the distribution of means is .9
i (the square root of .83). The shape of the comparison distribution will be a
3 distribution with § degrees of freedom.

3. Determine the cutoff sample score on the comparison distributio
at which the null hypothesis should be rejected. This is a one-tailed tes
because there was a reasonable basis for predicting the direction of the differ
ence. We will suppose that the researcher wanted to be conservative and 1ge
the 1% significance level. With 8 degrees of freedom, Table B-2 shows that
t score of at least 2.897 is needed to reject the null hypothesis.

4. Determine the sample’s score on the comparison distribution. Th
sample’s mean difference of 2 is 2.20 standard deviations (of .91 each) abov
the mean of 0 on the distribution of means.

5. Compare the scores from Steps 3 and 4 to decide whether to rejec
the null hypothesis. The sample’s ¢ score of 2.20 is less extreme than the cut
off 7 of 2.897, Thus, you cannot reject the null hypothesis. The experiment s
inconclusive. (Incidentally, had the researcher set the significance level a
{05, this result would have been significant.)

& AThird Example of a ¢ Test for Dependent Means

A developmental psychologist is studying infants’ responsiveness (o
strangers, using a new type of measure. He is able to measure 10 infarits at 3
months of age and then again at 4 months. His prediction is that there will be
an increase. Table 9-7 shows the results of this fictional study, along with the
calculation of difference scores and all the other calculations for the ¢ test for
dependent means. Figure. 9-8 shows the distributions involved. Here are the
steps of hypothesis testing: ‘ :

! 1. Restate the question as a research hypothesis and a null hypothe-
sis about the populations. There are two populations:

Population 1: Infants like those in this study
Population 2: Infants whose responsiveness to strangers is the same at 3
months and at 4 months of age

The research hypothesis is that Population 1’s mean difference score (of

responsiveness to strangers at 4 months minus responsiveness at 3 months) is

greater than Population 2's. The nul] hypothesis is that Population 1’s mean
difference score is not greater than Population 2's.

TRe ¢ Test for Dependent Means 273
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TABLE 9-7

t Test for a Study of Responsiveness 1o Strangers of 10 Iffants Measured at 3

and 4 Months of Age (Fictional Data)

Imfant Age Difference Devintinl Sqnared Deviation
Imonths 4 months ‘
1 10.4 10.8 A .26 .07
2 12.6 121 -5 =64 A1
k 1.2 12.1 9 76 58
4 10.9 11.4 A A6 ' 13
5 14.3 13.9 -4 =54 .29
] 13.2 13.3 3 Ao 03
' 7 9.7 10.9 1.2 1.06 1.12
3 11.5 11.5 0.0 -14 02
0 108 10.4 -4 -34 29
10 13.1 12.5 - -74 55
= 117.7 119.1 1.4 0 349
For difference scores:
M=1.4/10=.14.
m=0.

& = 55/df=3.49/(10— 1) = 3.49/% = .39,
53 =5YN= 39/10 = 039.
5, =VSE=030= 20

t for df = 9 needed for 5% significance level, one-tailed = 1.8

o r= (M-S, =(.14-0).20 = 70.
Decision: Do not reject the null hypothesis.

FIGURE 9.3
Distributions for fictional study of infants' responsiveness to strangers at 3
months and 4 months of age.
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2. Determine the characteristics of the comparison distribution. Tt
population mean is 0 difference. The estimated population variance is she
in Table 9-7 to be .39. The comparison distribution will be a 7 distribution fo
9 degrees of freedom with a mean of 0 and a standard deviation of .20,

3. Determine the cutoff sample score on the comparison distributio
at which the null hypothesis should be rejected. This is 2 one-tailed tes
(because there was a reasonable basis for predicting the direction of the dif-
ference). Using the 5% significance level and O degrees of freedom, Table B-2
shows that a 7 score of at least 1.833 is needed to reject the null hypothesis.

4. Determine the sample’s score on the comparison distribution. The
sample’s meun change of .14 is .70 standard deviations (of .20 each) on the
distribution of means above that distribution’s mean of 0.

5. Compare the scores from Steps 3 and 4 to decide whether to reject
the null hypothesis, The sample’s ¢ of .70 i3 less extreme than the needed ¢ of
1.833. Thus, you cannot reject the null hypothesis. The study is inconclusive.

Summary of Steps for Conducting a t Test for Dependent Means

Table 9-8 summarizes the steps in conducting a 1 test for dependent means.
Optional computational formulas making it easier to carry out a ¢ test for
dependent means by hand when you have a Jarge number of difference scores |
arc given in the chapter appendix.

i

TABLE 9-8
Steps for Conducting a ¢ Test for Dependent Means

1. Restate (he question as a research hypothesis and a null hypothesis about the Popu-
lations.

2. Determine the characietistics of the comparisen distribution.

a. Make each person’s two scores into a difference score. Do all the rest of the steps
using these difference scores.

b. Compute the mean of the difference Scores.
c. Assume a population rean of 0: W =0,
d. Compute the estimated population variance of difference scores: §° = 58/df.

e. Compute the variance of the distribution of means of diflerence scores:
52 =8UN.
f. Compyle the standard deviation of the distribution of means of difference scores:
2

Sy =VE2
2. The shape is a 1 distribution with df = N - 1.

3. Detcrmine the cutoff sample score on the comparison distribution at which the null
hypothesis should be rejected,

i 8. Determine the desired significance level and whether to use 2 one-tailed ora
Iwu-tailed test,

b. l.ook up the appropriale cutoff in a ¢ table.
4. Determing your sample’s score on the comparisen distribution: = (M — w8,

5. Compare the scores from Steps 3 and 4 to decide whether to teject the nu|
hypothesis.

Thelt Test for Dependent Means 275 |
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ASSUMPTIONS OF THE £ TEST

As we have seen, when using an estimated populationfvariance, the compari- : Ef
son distribution is a ¢ distribution. However, the complrison distribution will |

be exactly a ¢ distribution only if the distribution of indgviduals follows a nor- 1 as
mal curve. Otherwise, the comparison distribution yill follow some other sis
(usually unknown) shape. [

Thus, strictly speaking, a normal population is a fequirement within the o to

logic and mathematics of the ¢ test. A requirement likg this for a hypothesis- . || qu
assumption testing procedure is called an assumption. A normal pgpulation distribution is 1 sn
said to be an assumption of the # test. The effect of this gssumption is that if the N U
population distribution 18 not normal, it is technically jrong to use the r test. L re

Unfortunately, you usunally don't know whether thg population is normal. 7 fu
This is because when doing a ¢ test, usually all youfpave to go on are the CEF- ef
scores in your sample. Fortunately, as we saw in Chapter 3, distributions in ddR tic
psychology research quite often approximate a norgnal curve. (This also
applies to distributions of difference scores.) Also, sjptigticiang have found ye
that in practice, you get reasonably accurate results wih the # test even when m
the population is rather far from normal, In other wordy, the ¢ test is said to be
robust over moderate violations of the assumption of a normal population

robustness ‘ distribution. How statisticians figure out the robustnges of a test is an inter-
esting topic, which 1s described in Box 10-1 in Chaptef 10.

There is one reasonably common situation in wlich using a 1 test for R
dependent means is likely to give seriously distorted regults. This is when you thi
are doing a one-tailed test and the population is highlyfkewed (is very asym- sit
metrical, with a much longer tail o1 one side than the gher). ca

How do you know when your population is highly gkewed? One situation
is where the sample of difference scores is highly skwed. If the sample is hn
highly skewed, it is likely that the population the ggmple comes from is di:
highly skewed. Another sithation is where you have refson to think there is a th
floor or ceiling effect, making the distribution skewed ppecanse scores on one va
side can't go any higher ot lower. When you have regson to think that con- eff
ducting a r test would serionsly violate the normal cure assumption and give ef}
distorted results, there are several alternatives to the gtest you can use. You wi

will learn about these alternatives in Chapter 15.

EFFECT SIZE AND POWER
FOR THE t TEST FOR DEPENDENT MEA

Effect Size

You figure the effect size for a study using a # test fof dependent means the
same way as in Chapter 8. Tt is the difference betweergthe population means
divided by the population standard deviation: ( w, — J},)/ o. However, when

using difference scores, the mean of Population 2 is §sually O (that is, with tio
difference scores, p.,=0). This simplifies the situatio fo
ca

d= (I‘LI _“'0) — ﬂ (9_8) Co

o ¢ ng
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Remember when using this formula that I, is for the predicted mean of th
population of difference scores and o is for the standard deviation of the pop
ulations of difference scores.

The effect size conventions for a r test for dependent means are the sam
as you learned for the situation we considered in Chapter 8: A small effec
size 15 .20, a medium effect size is .50, and a large effect size is .80.

Consider an example. A sports psychologist plans a study on attitudes
toward teammates before versus after a game. She will administer an attitud
questionnaire twice, once before and once afier a game. Suppose that the
smallest betore-after difference that would be of any importance is 4 points
on the questionnaire. Also suppose that based on related research, the

- rescarcher figures that the standard deviation of difference scores on this atti-
tude questionnaire is about 8 points. Thus, w, =4 and & = 8. Applying the
effect size formula: d = p./ & = 4/8 = .50. In terms of the effect size conven-
tions, her planned study has a medium effect size.

If you want to estimate the effect size after you have conducted a study,
you divide the actual mean of the difference scores in your sample by the esti-
mated standard deviation of the population of difference scores:

d=— (9-9)

Remember, both M and § in this formula are for difference scores. Also note
that § is the standard deviation of the population of individuals (that is, in this
situation, of individual's difference scores). It is not the same as 8§, the stan-
dard deviation of the distribution of means (of difference scores).

Consider our first example of a ¢ test for dependent means, the study of
husbands’ change in communication quality. In that study, the mean of the
difference scores was —12.03. The estimated papulation standard deviation of
the difference scores would be 12.41. That is, we computed the estimated
variance of the difference scores (S2) to be 154.05; V§2=12.41. Therefore, the
cllect size is computed as d = M/S = -12.05/12.41 =—97. Thisis a very large
effect size. (The negative sign for the effect size means that the large effect
was a decrease.) ’

Power

Table 9-0 gives the approximate power at the .05 significance level for small,
medium, and large effect sizes and one- or two-tailed tests. In the SpOIts psy-
chology example, the researcher expected a medium effeet size (d=.50).If
she planned to conduct the study using the .05 level, two-tailed, with 20 par-
ticipants, the study would have a power of .59, This means that, if the
research hypothesis is in fact true and has a medium effect size, there is a
39% chance that this study will come out significant. _

The power table (Table 9-9) is also vseful when you are reading about a
nonsignificant result in a published study. Suppose that a study using a f test
tor dependent means had a nonsignificant result. The study tested signifi-
cance at the .05 level, two-tailed, and had 10 participants. Should you
conclude that there is in fact no difference at all in the populations? Probably

E17 373 5121

not. Even assuming a medium effect size, Table 9-9 shows that there is only
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TABLE 9-9 s Pl
Approximate Power for Studies Using the # Test for Deflendent Means in ‘
Testing Hypotheses at the .05 Significance Level i T:
Ditference {1&
Scores in .
Sample (N) Effed Size 151
1
Small Medgum Large th
(d=.20) (d =430) (d=_.80)
Two-Lailed test Pt
10 .09 66 m
20 A4 93 § sl
' k1] 19 49
40 24 .
50 29 *
100 55 *
One-tailed test
10 15 T8
20 A2 )
30 .29 *
40 a5 *
50 40 *
100 . 63 ¥

*Power iz nearly 1.

study, Now consider

used the .05 signifi-
ts. Table 9-9 tells you
ing ont significant if
ation. If there were a
s that there is almost a
nificant. Thus, in this
e resnlts of this study
t all or al most a very

a 32% chance of getting a significant result in thi
another study that was not significant. This study al
cance level, two-tailed, but had 100 research particip
that there would be a 63% chance of the study’s ¢
there were even a true small effect size in the pop
medium effect size in the population, the table indicat
100% chance that this study would have coms ont s
study with 100 participants, we could conclude from
that in the population there is probably no difference
small difference.

To keep Table 9-9 simple, we have given power fi
ferent numbers of participants (10, 20, 30, 40, 50,
adequate for the Kinds of rough evaluations you need
ing results of research articles.?

ires for only a few dif-
100). This should be
0 make when evaluat-

3Cohen (1988, pp. 28-39) provides more detailed tables, in term
levels of effect size, and significance lavels, If you use hia tables,
actually based on a 1 test for independent means {the simation we
use these tables for a t test for dependent mezans, first multiply yo
For example, if your effect size 15 .30, for purposcs of using Co
gider it to be 42 (that is, 30 x 1.4 = 42) The only other diffi
Cohen deseribes the significance level by the letter a (For “alph
either 1 or 2, referring to & one- or two-tailed test. For example, a
at the top means that this is the table for p < .05, one-tailed.

onsider in Chapter 10). To

desired effect size by 1.4.
n's tables, you would cofl-
nce from our table is that
evel), with & subscript of
ble that refers to “a, = 03
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Table 0-10 glves the approximate number of research participants needed to
have 80% power for small, medium, and large effect sizes using one- and two-
tatled tests, for the 03 significance levels. (Eighty percent is a common figure
nsed by researchers for the minimum power to make a study worth doing.)
Suppose you plan a study in which you expect a large effect size and will use
the .05 significance level, two-tailed. The table shows you would only need 14
participants to have 80% powet. On the other hand, a study nsing the sarne sig-
nificance Jevel, also two-tailed, but in which you expect only a small etfect
size would need 196 participants in your study for 80% power.”

The Power of Studies Employing the  Test for Dependent Means

Swdics using difference scores (that is, studies using a repeated-measures
design) often have considerably larger effect sizes for the same amount of
expected difference between means than other kinds of research designs. If
effect sizes arc larger, then power is larger. That is, testing each of a group of
participants twice (once under one condition and once under a different con-
dition) usually produces a high power type of study. In particalar, this kind of
study gives more power than dividing the participants up inlo tWo groups and
testing each group once (one group tested under one condition and the other
tested under another condition). In fact, studies using diflference scores osu-
ally have even more power than those in which you have twice ag many par-
ticipants, but tested each only once.

Why do repeated-measures designs have so much power? The reason is
that the standard deviation of difference scores is usually quite low. (The stan-
dard deviation of difference scores is what you divide by to get the effect size
when using difference scores.) In a repeated-measures design, the only varia-
tion is in the difference scores. Variation among participants on each testing’s
scores are not part of the variation involved in the analysis. This is because dif-
ference scores are all comparing participants to themselves, William 8. Gos-
set, who essentially invented the f test (see Box 9-1), made much of the higher
power of repeated-measures studies in a historically interesting controversy
over an experiment about milk, which is described in Box 9-2.

TABLE 9-10 ‘
Approximate Number of Research Participants Needed to Achieve
80% Power for the ¢ Test for Dependent Means in Testing Hypotheges
at the .05 Significance Level

Effect Size
Small Medium Large
(d=.20) {d =.30) (d=.80)
Two-tailed 186 33 14
One-tailed 156 26 12

“Morc delailed tables, giving nesded numbers of participants for levels of power other than

809 (and also for effect sizes other than .20, .50, und .80 and for other signifcance levels) are

E:OVidEd in Cohen (1988, pp. 54-55). However, see footnote 3 in this chapler about using
eqe tables.

Effect Size and Power for
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Box 9-2 .
The Power of Studies Using Difference Scores: i
How the Lanarkshire Milk Experiment '
Could Have Been Milked for More .
,§.wou1d beneﬁt fmm , i )
L “dix A for a dlqcussm ] r" dom ass1gnment to ‘
i ' ; ”‘gmups )} e ¢
- ofa group of éhlldren who W e'fasmgned to ‘ However, even teg sung in llght of the
‘milk reguhu‘lﬂ:“ to’ those . Were in-a’ control‘ present chapter, Gosset defv ed that the
group. The results were! that those whu dmnk rescarchers could have obt the same resmn ‘
mllk shbwed more. growth i . ..¢ . with 50 pairs of identigal twhns, flipping a coin'to
How;;-.vc;r, Wl]ham Gosset, a'contemporary sta- determine which’ of' g:"ch fir was in the' milk I
tmtu:lan (s B 1.;]), was appalled at the way - group (and sticking to it)..CF course, the statistic : \
th f:xpt:nm t conducted. It had cost about'  you would use is the ¢ fest 4 taught in Lh1s chap- ¢
;t‘ 5004 whmh m 11930 was a huge atnount of - ter—the  test for depend nifmens. ‘
Jmaopey,. and was donﬁ. wrong! Large studies such More. recanﬂy, e dél lupmem of pnwer ¢
1as this were. very popular’ among stausnmans in- analysis, w hmh we introduded m Chapter 8, has;, '
‘those days because thay seemed to-initate the -, thoroughly vindicated Goss It is now clear just N
"/large numbefs found in nature. Gosset, by con-" . how surprisingly few -parfeipants are needed. t
:trast bemgabrcwcr was fore d to use very small when 2 researcher can;find 4 way to set up a-
nurnbf:rs in his smdms#fwexpanmcntal batches of v ,,rcpmtad measiires de n . which: difference I
beer were 100 costly And he was often’ ch;deqwlﬁy s 'z.c,un,s are the basic unit of ghalysis; (In this case.; !
& & &i each. pgir of twms would 011&5 part1c1pant ”) !
of; - As Gosset could hav¢ ‘mld m; studies that use !
m assignment. the: 1 test for depe,nde.nt megns can be- exu-cmely N !
Eudy, teache:r:-. (E %nmnve L T !
Refg;'e::c'e.\';' Peters (1937),"1':1;1.1».5]1‘{] {19 '4). o (

CONTROVERSIES AND LIMITATIONS

The main controversies about the ¢ test have to do with its relative advantages
and disadvantages in comparison to various alternftives—alternatives that
we will discuss in some detail in Chapter 15. (Thesg same issues also arise
over the procedures we will cover in Chapters 10-138 There is, however, one
consideration that we want to comment on now. If relates to all research
designs in which the same participants are tested fbefore and after some
experimental intervention. (This is the kind of situlition that the r test for
dependent means is often used to evaluate.)

Simply measuring a gronp of people before after an experimental
procedure, without any kind of contro} group that dges not undr.:rgo the pro-
cedure, may have high power, but it is a weak researdh design in terms of the
clarity of conclusions it can produce (Cook & Camptgll, 1979). As described
in more detail in Appendix A, even if such a study produces a significant
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difference, it leaves many alternative explanations for why that difference
pccurred. For example, the research participants might have matured or
improved during that period aryway, or perhaps other events happened in
between, or the participants not getting benefits may have dropped out. It is
even possible that the initial test itself cansed changes that otherwise might
not have occurred.

Note, however, that the difficulties of research that tests people before
and after some intervention are shared only slightly with the kind of study in
which participants are tested under two conditions, such as noisy versus
quiet, with half tested first under one condition and half tested first under the
other condition.

t TESTS AS DESCRIBED IN RESEARCH ARTICLES

Research articles usually describe ¢ tests in a fairly standard format that pro-
vides the degrees of freedom, the ¢ score, and the significance level. For
example, “#(24) = 2.80, p < .05" tells you that the researcher used a t test with
X 24 degrees of freedom, obtained a ¢ score of 2.80, and the result was signifi-
cant at the 05 level. Whether 4 one- or two-tailed test was used may also be
noted. (If it is not noted, assume the researcher used a two-tailed test.) Usu-
ally the means, and sometimes the standard deviations, ate given for ¢ach
testing. Rarely is the standard deviation of the difference scores reported.

Had our student in the dormitory example reported the results in a
research article, it would have been something like this: “The sample from
my dormitory studied 2 mean of 3.2 hours (§D = .20). Baged on a gingle-
i sample ¢ test {one-tailed), this was significantly different from the known
A mean of 2.5 for the college as a whole, /(15) = 3.50, p < 01”7 The researchers
-t in our fictional flopd victims example might have written up their results as
follows: “The reported hopefulness of our sample of flood victims (M = 4.7,
SD = 1.89) was not significantly different from the midpoint of the scale
(4.0), {9 = 1.17"

As we noted earlicr, psychologists only rarely use a ¢ test for a single
sample. We introduced this ¢ test mainly 45 a stepping-stone to the more
widely used # test for dependent means. Nevertheless, one does sometimes
see the 1 test for a single sample in research articles. For example, Weller and

i Weller (1997) conducted a study of the tendency for the menstrual cycles of
— i women who live together to become synchronized. For their statistical analy-
sis, they compared scores on a measure of synchronization of pairs of women

es
|at living together for women in their study (Population 1) versus the degree of
se synchronization of these pairs of women that wonld be expected by chance
ne (Population 2}. That is, they created a kind of artificial population that has a
ch ~mean of what you would expect if there were no synchronization. They ana-
ne lyzed their resulis with “one-sample ¢ tests” (p. 147). The results are shown in
‘or Tuble 9-11. Each row of the table is a separate single-sample ¢ test. The first

row is a test comparing the synchrony scores of 6,32 for the 30 roommate sis-
tal ter patrs (their sample from what we would call Fopulation 1) to an expected
0- synchrony score of 7.76 (what we would call the mean of Population 2). The
he row shows those figures plus the difference of 1.44, the standard deviation
ed . of 3.40 of this difference, the ¢ score of 2.27, and the p level of .011. Notice
i R that their ¢ column was actually written as “z(1).” This is not standard and

t Tests As Dis
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TABLE 9-11

Menstrual Synchrony and Expected Scores (by Days)

CCIS . . E17 373 5121 P.1le-18

certainly does not mean that their ¢ distribution had gne degree of freedom.
We presume they meant that this was a single-sample [ test.

As we have said, the t test for dependent means § much more common.
Olthoff (1989) might have reported his result in thg example we used as:
“There was a significant decline in communication fuality, dropping from
116.32 before marriage to 104.26 aller marriage, #(1§) = 2.76, p < .05, two-
tailed.” The researcher in the fictional surgeons studyjcould have written the
following: “The mean performance for the quiet grofp was 18.89, while the
performance for the noisy group was 16.89. This difference was not statisti-
cally significant at the .01 lcvel, even with a one-tail§d test, £(8) = 2.20.” As
another example, Holden et al, (1997) compared mofpers’ reported attitudes
towards corporal punishment of their children fromfpefore to 3 years after
having their first child. “The average change in the wpmen’s prior-to-current
attitudes was significant, £(107) = 10.32, p <.001 , . ¥ (p. 485). (The change
was that they felt more ncgatively about corporal pgmishment after having
their child.) :

Researchers also often present the means of thel sroups in a table. For
example, Pezdek and her colleagues (1997) remindeqeach of a group of col-
lege students of several events that supposedly happfned to them as 8-year-
olds. The students were asked to describe the evenf in some detail. These
descriptions were rated for nuinber of words recallgd and number of idea
units recalled. The students were also asked (o rate eagh event for how clearly
they recalled it and for how confident they were it pappened. Some of the
events had actually happened and some were ones thiit could have happened
but did not. (The researchers had contacted the mofphers of the students in
advance with the permission of the students.) As is tpical in such research,
many of the students incorrectly recalled having expe ienced the falge events.
Here are their results:

= I N sl alc

[ B T B = o 3

To investigate potential differences bgtween memofies for true versus false
events, we compared various characteristics of the mefnories for the 13 subjects
who recalled at least one false event. Two-tailed sighificance tests were con-
ducted on these data, and the results are presented if [Table 9-12]. Compared
with recall of false events, recall of true events em@loyed significantly more

Group/month

Roominates-—sisters
Maonth 1
Month 2
Month 3
Close friends—roommates
Month 1
Month 2
Month 3
Families
Meonth 1
Month 2
Month 3

Synchrony Expected

I T T S LI R

N SCOre . scoTe Difference b 1) F

30 £.32 7.76 1.44 3.4 297 0Ll

10 6,24 776 1.52 3.0 2.66 004

29 7.40 7.76 0.36 3.0 0.57 28

19 573 7.75 2.02 3.8 325 =,000 i
39 6.01 7.5 1.74 42 2.52 006 ’
a1 7.44 7.5 0.31 4.6 0.88 19 ;
18 5.80 7.70 1.90 2.7 2.86 < 00 i
18 6.09 7.70 1.61 1.8 3.52 <000 '

17 7.1% 7.70 (.51 2.7 0.75 23

Note. Data from Weller, A., & Weller, L. (1997}, tab. 1. Menstrual synchrony under optimal conditions: Bedouin families, Joumal of
Comparative Psychology, 111, 143-151. Copytight, 1997, by the Amenican Psychological Association. Beprinted with permission.
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TABLE 9-12
Means (and standard deviations) for Measures Comparing Recall of True and
False Events in Experiment 1

Recalled Event
Mcasure True False
Number of words recalled #H+* 27.79 (8.81) 1542 (7.69)
Number of idea units recalled™* 6.33 (2.53) 3.23(1.55)
Clarity rating™** 6.90 (0.17) 4.00(0.18)
Confidence rating® 6.88 (0.21) 5.00.(0.21)

*The rating scale ranged from 1 (low) to 10 (high).

W = 02, two-tailed; "4p =2 01, two-tailed; *+*%p < 001, two-tailed.

Note. Data from Pexdek, K., Finger, K., & Hodge, D (1997) tak, 2. Planting false childhood
memories: The role of event plausibility. Psycholog:cal Science, 8, 439, Copyright,1997, by
the American Prychological Society. Reprinted with permission.

words, 1(12) = 4.54, p < .001, and more idea units, 1(12) =3.43, p < .01. Thus,
the recall output for true versus false events conld be differentiated in terms of
the number of new details provided for each; there werc almost twice as many
details provided for true as false events. Compared with recalled false events,
rccalled true events were also associated with significantly higher ratings of clar-
ity, #(12) = 3.99, p < 01, and confidence, H{12) = 2,73, p < (2. (p. 438)

Notice in this example, they never referred to the name of the significance
test. However, you know it is a ¢ test begause they use ¢ in describing the
results, You can tell it was a ¢ test for dependent means because they are com-
paring each participant’s score on memory of true events to his or her score
on memory of false events. That is, the comparison is between two scores
from each participant. '

SUMMARY

The standard five steps of hypothesis testing are used when the variance of
the population is not known. However, in this situation you must estimate the
population variance from the scores in the sample, using a formula that
divides the surmn of squared deviation scores by the degrees of freedom (df =
N.—1). Also, when the variance is not known, the comparison distribution of
means is a ¢ distribution (with cutoffs given in a # table). A ¢ distribution has
slightly heavier tails than a normal curve (just how much heavier depends on
how few degrees of freedom). Finally, in this situation the number of standard
deviations from the mean that a sample’s mean is on the 7 distribution is

called a ¢ score.

A ttest for dependent means is used in studies where each participant has
two scores, such as a before score and an after score. In this ¢ test, you first
figure a difference score for each participant, then carry out the nsnal five
steps of hypothesis testing with the modifications described in the paragraph
above and making Population 2 a population of difference scores with a mean
of 0 (no difference).

An assumption of the ! test is that the population distribution is a normal
curve. However, even when it i3 not, the ¢ test 15 usually fairly accurate. The

E17 373 5121 P.17-18
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main exception for the ¢ test for dependent means is Yhen the population of
difference scores is highly skewed and you are using one-tailed test.

The effect size of a study using a ¢ test for dependcfit means is the mean of
the difference scores divided by the standard deviation pf the difference scores.
Power and needed sample size for 80% power can e looked up in special
tables. The power of studies using difference scores s usually much higher
than that of studies using other designs with the samejpumber of participants.

Research methodologists point out that research ipvolving a single group
tested before and after some intervening event, withgpt a control group, pet-
mits many alternative explanations of any observed cllanges.

t tests ate reported in research articles using standard format—for

example, “#(24) = 2.80, p< 037
Key Terms
agsumption robustness ¢ test for a single sample
biased estimate ¢ distribution ¢ test for dependent means
degrees of freedom (df) I score unbiased estimate of the population
difference scores ¢ table variance (5%

repeated-measures design  ftests

Practice Problems

unning for shenff claims
npe time of emergency
which is thought to be the
current sherilf. There are
ndard deviation of such
ined. Thanks to this cam-
carefu] records are now

These problems involve computation (with the assis- 2. Suppose that a candidate
tance of a calculator). Most real-life statistics problems are  that she will reduce the av
done on a computer. But even if you have a computer, do  response to less than 30 minute
these by hand to ingrain the methad in your mind. _ average response time under th

For practice in using a computer to solve statistical” ndpast records, so the actual
problems, refer to the computer section of each chapter of  response times cannot be dete
the Student’s Study Guide and Computer Workbook that paign; she is elected sheriff, a

accompanias this [ext. kept. The response times for theffirst month are 26, 30, 28,
All data are fictional (unless an actual citation is given). 29, 23, 28, 32, 35, 24, and 23 mjutes.
Answers to Set I problems are given at the back of the Using the 5% level of signficance, did she keep her
book. promise? (a) Go through the fivegsteps of hypothesis testing.

histogram of the distnbu-
of the population distribu-

(b) Illustrate your answer with
tion of the sample and sketche

SET ) tion and the distribution of me

1. Tn each of the studies below, a single sample’s mean
is being compared to a population with a known mean but
an upknown variance. For each study, decide whether the
result is significant,

Estimated
Popu- Popu- Signifi-
Sample lation lation Sample cance
Size  Mean Variance Mean Tails Level
)] () (8% (M) {0)
{a) 64 12.40 ¢.00 11.00 1dow 03
predicted)
(ty 49 100635 317.91 1.009.72 2 01
{c) 400 52.00 7.02 5241 1(high .01
predicted)

s, showing the 7 score and
} Explain your answer to
ourse in statistics,

studies using difference
difference is significandy
he effect size. (If df is not
e nearest lower df value.)

cutoff points for significance.
someone who has never taken a

3. For each of the followi
scores, determine if the me
different from 0. Also comput
given in the tuble, use the ¢ for

Number Mean -
of Tif- of Dif-

ference ference Gigni-

Scores Scores ‘ ficance
in Sample in Sample Talls Level
() 20 1.7 1 (high predicted) .03
() 164 23 2 .05
(c) 13 -22 1 (low predicted) 01
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