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Human-Computer Interaction
IS4300

I3: Ethnography
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T2: Requirements Analysis
Review…

User Analysis
Task Analysis 

Problem Scenarios 
Usability Criteria

Implementation Support

Dix Chapter 8
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Exercise

 Your engineers just developed a 
new desktop computer.

 They give you the following 
primitives:
 drawPixel(x,y,color)
 readMouseX(), readMouseY(), 

readMouseButton(), readKey()

 They ask you to implement this:

Levels of Abstraction
in UI Software

 Windowing systems 
 central environment for both the programmer and user of an 

interactive system, allowing a single workstation to support separate 
user-system threads of action simultaneously. 

 Interaction toolkits 
 abstract away from the physical separation of input and output 

devices, allowing programmer to describe behaviors of objects at a 
level similar to how the user perceives them. 

 User interface management systems 
 Allows designer and programmer to control the relationship between 

the presentation objects of a toolkit with their functional semantics in 
the actual application.

 Application
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Toolkit

Levels of Abstraction

I/O Devices

Layered Drawing/Windows

W
indow
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Input/Output Abstraction

Elements of windowing 
systems
Device independence

programming the abstract terminal device drivers
image models for output and (partially) input

 pixels
 PostScript  (MacOS X, NextStep)
 Graphical Kernel System (GKS)
 Programmers' Hierarchical Interface to Graphics (PHIGS)

Resource sharing
achieving simultaneity of user tasks
window system supports independent processes
isolation of individual applications
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roles of a windowing system 

Architectures of windowing 
systems
three possible software architectures

 all assume device driver is separate
 differ in how multiple application management is implemented

1. each application manages all processes
 everyone worries about synchronization
 reduces portability of applications

2. management role within kernel of operating system
 applications tied to operating system

3. management role as separate application
maximum portability
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Human Perception and 
Displays

 Split a picture into a collection of small 
dots and we can reconstruct it.
 pixels and resolution

 Present consecutive “frames” of a 
dynamic scene and we can smooth it.
 > 15 frames per second refresh rate

Painting a picture

 Each memory cell controls 1 pixel

1

Frame buffer display surface
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Size of Frame Buffer
 Resolution 

 # of pixels
 1024 X 768 = 786432

 Color
 Black & White – 1 bit per pixel

 Grayscale – multiple bits vary intensity

 Color Depth – 3 (R, G & B) values

True Color

 Humans can distinguish ~ 2^8 different 
gradations for each of R, G & B

 3 bytes or 24-bits is all you need

 For transparency, we can add an extra 
byte.
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Software models of output

 Also called imaging model

 Abstracts away the hardware 
component

 Stroke (or vector) model
 Pixel (or raster) model
 Region model

Vector model
 Earliest imaging model

 abstracted hardware vector refresh

 Advantages
 can freely apply mathematical xforms

 Scale rotate, translate
 Only have to manipulate endpoints

 Disadvantages
 limited / low fidelity images

 wireframe, no solids, no shading
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Raster (pixel) model

 Most systems provide model pretty close to 
raster display hardware

 integer coordinate system

 0,0 typically at top-left with Y down

 all drawing primitives done by filling in pixel color 
values

Region model

 All drawing modeled as placing paint on a 
surface through a “stencil”
 Stencil modeled as closed curves (e.g., splines)

 Postscript model is based on this approach
 Dominant model for hardcopy, but not screen
 There are display systems based on Postscript
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Region model
 Advantages

 Resolution & device independent
 does best job possible on avail HW
 Don’t need to know size of pixels

 Can support full transformations
 rotate & scale

 Disadvantages
 Slower

 Less and less of an issue
 But interactive response tends to be dominated by 

redraw time
 Much harder to implement

A Hierarchy of Windows

 Most UIs are described as a collection of 
hierarchically ordered windows or elements 
(called interactors).
 Top of “tree” or root is whole display

 Geometric relationships (containment, 
overlap) are important.
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Output and the Interactor 
Tree

output is organized around the tree 
structure

 each object has own behaviors & states
 can draw itself
 can do other tasks
 knows own capabilities and those of children

 generic tasks are specialized to specific 
subclasses

Output Tasks in Windowing 
Systems

 3 main tasks

 draw / redraw

 damage management

 layout
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Drawing

each object knows how to create its own 
appearance

local drawing

traverse interactor tree

request children to draw themselves

Damaging Windows

windows suffer “damage” when they are 
obscured then exposed (and when 
resized)
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Damage Management

each object reports its own damage to 
its parent

collect damaged regions at top/root 
interactor level

arrange for redraw of damaged areas at 
the top

Redrawing

when damage occurs, system schedules 
a redraw

need to first ensure that everything is in 
the right place and is the right size
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Drawing issue
 cannot size and position as we draw

 look of first child might depend on last child’s 
size

 arbitrary dependencies

 may not follow redraw order

 need to compute layout prior to starting to 
draw

Programming the application 

read-evaluation loop

repeat
read-event(myevent)
case myevent.type

type_1:
do type_1 processing

type_2:
do type_2 processing

...
type_n:

do type_n processing
end case

end repeat
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Programming the application 

notification-based
void main(String[] args) {

Menu menu = new Menu();
menu.setOption(“Save”);
menu.setOption(“Quit”);
menu.setAction(“Save”,mySave)
menu.setAction(“Quit”,myQuit)

...
}

int mySave(Event e) {
// save the current file 

}

int myQuit(Event e) {
// close down

}

Read-eval loop vs.
Notifications

 Pros & Cons of each?
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Using interaction toolkits
Interaction objects
 input and output

intrinsically linked

Toolkits provide this level of abstraction
 programming with interaction objects (or widgets, gadgets)
 promote consistency and generalizability through similar look and feel
 amenable to object-oriented programming

move press release move

Objects and the UI

 Why are they so well suited?
 Natural metaphor (direct manipulation)
 Encapsulation (info hiding)
 Class-instance
 Subclassing
 Prototype instances
 Message passing
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Standard UI Widgets
The “Macintosh 7”

 Button
 Slider
 Pulldown menu
 Check box
 Radio buttons
 Text entry fields
 File pick/save

1984

Influence on today’s GUIs

 The Macintosh 7 have become standard
(common) interaction techniques

 MFC as an example

 Sure enough, inside the Swing toolkit as well
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The good & the bad

 Collection of good interaction 
techniques that work well
 uniformity is good for usability

 Significant stagnation
 Failing to customize interaction techniques 

to tasks

CS 4470/6456 - Fall 2003

Example of non-standard 
widget:  Pie menus

 A circular pop-up menu with “dead area” at 
center
 basically only angle counts

 What are Fitts’ law properties?
 minimum distance to travel
 minimum required accuracy (dependent on # of 

options)
 very fast (dependent on # of options)
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CS 4470/6456 - Fall 2003

Pie menus

 How many of you have seen this before?

 Reasons why we don’t see these used?
 Just not known
 Hard to implement (draw labels) although there 

are variations that are easier
 Don’t scale although there are variation that do 

support hierarchy

Monolithic layered UI Architectures 
don’t work well because...

 Modern interfaces: set of quasi-independent 
agents
 Each “object of interest” is separate
 e.g. a button

 produces “button-like” output
 acts on input in a “button-like” way
 etc.

 Each object does its tasks based on
 What it is
 What its current “state” is

 Context from prior interaction or application
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Leads to object-based solutions

 Interactor objects
 AKA components, controls, widgets

 Each object implements each aspect
 In a way that reflects what it is

 Objects organized hierarchically 
 Normally reflecting spatial containment 

relationships
“Interactor trees”

Challenge

 How to minimize complexity of 
individual objects?

 Three general approaches
 Inheritance 
 Composition 
 Aggregation



9/26/2013

21

Inheritance

 All concerns in one object/class
 inherit / override them separately
 works best with multiple inheritance
 example: draggable_icon

 inherit appearance from “icon”
 output aspects only

 inherit behavior from “draggable”
 input aspects only

Composition

 Put together interactive objects at 
larger scale than interactors

 Container objects
 e.g., row and column layout objects

 Containers can also add input & output 
behavior to things they contain



9/26/2013

22

Aggregation

 Different concerns in separate objects
 Treat collection as “the interactor”

 Classic architecture: 
“model-view-controller” (MVC)
 from Smalltalk 80

MVC motivation
 The UI of an application is subject to many 

changes:
 Change of UI for different users
 Same info can be shown in different windows
 Changes to underlying data should be reflected 

quickly everywhere
 Changes to UI should be easy, even at runtime
 Different “look and feel” should not affect 

functional core
 So separate processing, output, and input
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MVC

 MVC divides application into:
 Model of core functionality and data
 Views displaying information to user
 Controllers handling user input

 Views and Controllers comprise UI
 Change-propagation mechanism 

ensures consistency between Model and 
UI

MVC History
 Invented by Trygve Reenskaug and 

introduced into the Smalltalk-80 programming 
environment developed at Xerox PARC.

 Elements of MVC appear in many modern 
GUIs (MFC, Swing, … )

 More info: 
 Buschmann et al. (1996) Pattern-Oriented 

Software Architecture. John Wiley & Sons, pp. 
125-143.



9/26/2013

24

Model-View-Controller 
Architecture

Model

View

Controller

Display

Inputs

What are the advantages to separating these?

Model

 Encapsulates application-specific data 
and functionality, providing:
– methods to edit data, which Controller can 

call
– methods to access state, which View and 

Controller can request
 Maintains registry of dependent Views 

and Controllers to be notified about 
data changes
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Model Examples

 text editor: model is text string
 slider: model is an integer
 spreadsheet: collection of values related 

by functional constraints

View

 Mechanism needed to map model data 
to rendition (view / display) 

 When Model changes, View is informed
 View requests relevant model information
 View arranges to update screen

 Declare damaged areas
 Redraw when requested



9/26/2013

26

View Examples

 Slider: text-field, line with bead, temp. 
gauge

 Spreadsheet:
 Tabular representation
 Bar chart
 Histogram

Controller

 Accepts user input events
 Translates events into methods invoked 

on Model
 Activates/Deactivates UI elements 

(graying)
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Controller Examples

 Textual commands
 Mouse (point and click) commands
 No input

MVC Dynamics

 1.  User input 
event routed by 
Window System to 
appropriate 
Controller.

 2.  Controller may 
require View to 
“pick” object of 
focus for event.

C

V

M
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MVC Dynamics

 3. Controller 
requests method of 
Model to change its 
state.

 4. Model 
changes its internal 
state

C

V

M

MVC Dynamics

 5.Model notifies all 
dependent Views 
that data has 
changed.

 6.View requests 
from Model current 
data values. C

V

M
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MVC Dynamics

 7.  Model notifies 
all dependent 
Controllers that 
data has changed.

 8. Controller 
requests from 
Model current data 
values.

C

V

M

MVC Dynamics

 9. Controller 
informs View if 
elements are 
disabled.

 10. View requests 
redraw

C

V

M
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MVC: Pros and Cons
 Pros:

 Multiple views of same model
 Synchronized views
 Pluggable V & C and “look and feel”

 Cons:
 Complexity for simple interactors
 Potentially excessive updates/messages
 Tight coupling, in practice (V-C, VC-M)
 Lack of portability
 Some toolkits make MVC framework hard

Swing’s Modified MVC 
Architecture (“Model-Delegate”)

 Collapse View & Controller
 Hard to write these independently
 Allows pluggable look and feel

Delegate
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CS 4470/6456 - Fall 2003

Example: pieces in a JButton

Interaction toolkit example

 Java SWING!
 Hold that thought…
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Swing is Notification based
class MyActionHandler implements ActionListener {

public void actionPerformed(ActionEvent event) {

System.out.println(“Somebody pushed me!”);

}

}

Button button1=new Button(“Push Me”);

button1.addActionListener(new MyActionHandler());

User Interface Management 
Systems (UIMS)
 Specify complete UI behavior by declarative 

specification

 Techniques for dialogue controller
• menu networks • state transition diagrams
• grammar notations • event languages
• declarative languages • constraints
• graphical specification
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Graphical specification
 what it is

 draw components on screen
 set actions with script or links to program

 in use
 with raw programming most popular technique
 e.g. Visual Basic,  Dreamweaver,  Flash

 local vs. global
 hard to ‘see’ the paths through system
 focus on what can be seen on one screen

HyperCard
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LabView

Research Example: SILK
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Swing & Netbeans

Java UI APIs

 AWT
 The original – now mostly obsolete.

 Swing
 The current standard.

 SWT (Standard Widget Toolkit)
 Open source widget toolkit.

 JavaFX
 Becoming new standard UI toolkit, but not as many 

components available yet, can’t customize look-and-feel 
(yet). Oracle plans to open source.
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AWT vs. Swing

 AWT used “heavy weight” components
 Uses native widget & processes

 Swing uses “light weight” components
 1997, 1.1.5
 Uses native window for top-level frame, but Swing 

provides its own windowing system within the frame
 Even draws its own menus

 Thus,
 Can have “pluggable look-and-feel”
 Can be deployed on any device (with req’d libs)
 Many more (non-native) widgets 

Pluggable Look-and-Feel

Java GTK+

Windows Mac
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Buttons

Combo Box
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Menus

Text Field



9/26/2013

39

Labels

Tool tips
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Embedded Panels

Advanced (not this homework)
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JApplet

A kind of Panel

Live Demo of NetBeans for 
Applet Building
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Swing Homework – Create a 
Restaurant Ordering Applet
 Two JLabels, one with an icon.
 Two JButtons, one with an icon.
 One JButtonGroup with at least 3 JRadioButton 

options (with toggling between buttons functional).
 Two JCheckBoxes.
 One JComboBox with at least two items.
 One JTextField
 One JPanel with a titled border enclosing at least one 

other component.
 One tool tip on one component.
 One Menu with at least two options.

Swing Events & 
Graphics Primitives
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JApplet

A kind of Panel

Useful stuff
 Graphics getGraphics() called within JApplet

 Returns a ‘Graphics’ object
 Device-independent interface to graphics
 Basics (plus ‘fillX’ for most of these):

 drawLine(x1,y1,x2,y2);
 drawRect(x,y,w,h);
 drawOval(x,y,w,h)
 drawPolygon(int[] xpts,int[] ypts,numpts)
 drawString(“a string”,x,y)
 drawArc(x,y,w,h,startAngle,endAngle)

 setColor(Color)
 Notes: ‘java.awt’ pkg, coordinate system
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Colors
java.awt.Color

 Constructors
 Color(int R,int G,ing B) //0..255 ea
 Color(float R,float G,float B) //0..1

 Pre-defined as constants
 black,blue,cyan,darkGray,gray,green, 

lightGray,magenta,orange,pink,red,white, 
yellow

Event Model

 Swing Events are a subclass of 
java.awt.AWTEvent (subclass of 
java.util.EventObject)
 getSource() -> who produced it
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Swing is Notification based
class MyActionHandler implements ActionListener {

public void actionPerformed(ActionEvent event) {

System.out.println(“Somebody pushed me!”);

}

}

Button button1=new Button(“Push Me”);

button1.addActionListener(new MyActionHandler());

Events by Component
Component

ComponentEvent, FocusEvent,
KeyEvent, MouseEvent

Container
ContainerEvent

JRadioButton

JButton
JMenuItem

ActionEvent

JCheckbox
ItemEvent

Window
WindowEvent

JScrollbar
AdjustmentEvent

JTextComponent
TextEvent

JTextField
ActionEvent

JList
ActionEvent, ItemEvent
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Event Types
Event
Action
Adjustment
Component

Container
Focus
Item
Key
Mouse

Text

Listener Methods
actionPerformed()
adjustmentValueChanged()
componentHidden(), componentMoved(),
componentResized(), componentShown()
componentAdded(), componentRemoved()
focusGained(), focusLost()
itemStateChanged()
keyPressed(), keyReleased(), keyTyped()
MouseListener/MouseAdapter:
mouseClicked(), mouseEntered(), mouseExited(),
mousePressed(), mouseReleased()
MouseMotionListener/MouseMotionAdapter:
mouseDragged(), mouseMoved()
textValueChanged()

Some Event Methods

ItemEvent

KeyEvent

MouseEvent

getStateChange()  //SELECTED | DESELECTED

getKeyChar(), getKeyCode()

getX(), getY(), getClickCount()
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NetBeans Example

To do

 Read 
 Design (Dix Ch 5; Rosson Ch 3)

 Due: T2 – Requirements Analysis
 Start Homework I4 – Swing & Netbeans


