
9/26/2013

1

Human-Computer Interaction
IS4300

I3: Ethnography

9/26/2013

2

T2: Requirements Analysis
Review…

User Analysis
Task Analysis

Problem Scenarios
Usability Criteria

Implementation Support

Dix Chapter 8

9/26/2013

3

Exercise

 Your engineers just developed a
new desktop computer.

 They give you the following
primitives:
 drawPixel(x,y,color)
 readMouseX(), readMouseY(),

readMouseButton(), readKey()

 They ask you to implement this:

Levels of Abstraction
in UI Software

 Windowing systems
 central environment for both the programmer and user of an

interactive system, allowing a single workstation to support separate
user-system threads of action simultaneously.

 Interaction toolkits
 abstract away from the physical separation of input and output

devices, allowing programmer to describe behaviors of objects at a
level similar to how the user perceives them.

 User interface management systems
 Allows designer and programmer to control the relationship between

the presentation objects of a toolkit with their functional semantics in
the actual application.

 Application

9/26/2013

4

Toolkit

Levels of Abstraction

I/O Devices

Layered Drawing/Windows

W
indow

 Sys

O
S

H
ardw

are

Input/Output Abstraction

Elements of windowing
systems
Device independence

programming the abstract terminal device drivers
image models for output and (partially) input

 pixels
 PostScript (MacOS X, NextStep)
 Graphical Kernel System (GKS)
 Programmers' Hierarchical Interface to Graphics (PHIGS)

Resource sharing
achieving simultaneity of user tasks
window system supports independent processes
isolation of individual applications

9/26/2013

5

roles of a windowing system

Architectures of windowing
systems
three possible software architectures

 all assume device driver is separate
 differ in how multiple application management is implemented

1. each application manages all processes
 everyone worries about synchronization
 reduces portability of applications

2. management role within kernel of operating system
 applications tied to operating system

3. management role as separate application
maximum portability

9/26/2013

6

Human Perception and
Displays

 Split a picture into a collection of small
dots and we can reconstruct it.
 pixels and resolution

 Present consecutive “frames” of a
dynamic scene and we can smooth it.
 > 15 frames per second refresh rate

Painting a picture

 Each memory cell controls 1 pixel

1

Frame buffer display surface

9/26/2013

7

Size of Frame Buffer
 Resolution

 # of pixels
 1024 X 768 = 786432

 Color
 Black & White – 1 bit per pixel

 Grayscale – multiple bits vary intensity

 Color Depth – 3 (R, G & B) values

True Color

 Humans can distinguish ~ 2^8 different
gradations for each of R, G & B

 3 bytes or 24-bits is all you need

 For transparency, we can add an extra
byte.

9/26/2013

8

Software models of output

 Also called imaging model

 Abstracts away the hardware
component

 Stroke (or vector) model
 Pixel (or raster) model
 Region model

Vector model
 Earliest imaging model

 abstracted hardware vector refresh

 Advantages
 can freely apply mathematical xforms

 Scale rotate, translate
 Only have to manipulate endpoints

 Disadvantages
 limited / low fidelity images

 wireframe, no solids, no shading

9/26/2013

9

Raster (pixel) model

 Most systems provide model pretty close to
raster display hardware

 integer coordinate system

 0,0 typically at top-left with Y down

 all drawing primitives done by filling in pixel color
values

Region model

 All drawing modeled as placing paint on a
surface through a “stencil”
 Stencil modeled as closed curves (e.g., splines)

 Postscript model is based on this approach
 Dominant model for hardcopy, but not screen
 There are display systems based on Postscript

9/26/2013

10

Region model
 Advantages

 Resolution & device independent
 does best job possible on avail HW
 Don’t need to know size of pixels

 Can support full transformations
 rotate & scale

 Disadvantages
 Slower

 Less and less of an issue
 But interactive response tends to be dominated by

redraw time
 Much harder to implement

A Hierarchy of Windows

 Most UIs are described as a collection of
hierarchically ordered windows or elements
(called interactors).
 Top of “tree” or root is whole display

 Geometric relationships (containment,
overlap) are important.

9/26/2013

11

Output and the Interactor
Tree

output is organized around the tree
structure

 each object has own behaviors & states
 can draw itself
 can do other tasks
 knows own capabilities and those of children

 generic tasks are specialized to specific
subclasses

Output Tasks in Windowing
Systems

 3 main tasks

 draw / redraw

 damage management

 layout

9/26/2013

12

Drawing

each object knows how to create its own
appearance

local drawing

traverse interactor tree

request children to draw themselves

Damaging Windows

windows suffer “damage” when they are
obscured then exposed (and when
resized)

9/26/2013

13

Damage Management

each object reports its own damage to
its parent

collect damaged regions at top/root
interactor level

arrange for redraw of damaged areas at
the top

Redrawing

when damage occurs, system schedules
a redraw

need to first ensure that everything is in
the right place and is the right size

9/26/2013

14

Drawing issue
 cannot size and position as we draw

 look of first child might depend on last child’s
size

 arbitrary dependencies

 may not follow redraw order

 need to compute layout prior to starting to
draw

Programming the application

read-evaluation loop

repeat
read-event(myevent)
case myevent.type

type_1:
do type_1 processing

type_2:
do type_2 processing

...
type_n:

do type_n processing
end case

end repeat

9/26/2013

15

Programming the application

notification-based
void main(String[] args) {

Menu menu = new Menu();
menu.setOption(“Save”);
menu.setOption(“Quit”);
menu.setAction(“Save”,mySave)
menu.setAction(“Quit”,myQuit)

...
}

int mySave(Event e) {
// save the current file

}

int myQuit(Event e) {
// close down

}

Read-eval loop vs.
Notifications

 Pros & Cons of each?

9/26/2013

16

Using interaction toolkits
Interaction objects
 input and output

intrinsically linked

Toolkits provide this level of abstraction
 programming with interaction objects (or widgets, gadgets)
 promote consistency and generalizability through similar look and feel
 amenable to object-oriented programming

move press release move

Objects and the UI

 Why are they so well suited?
 Natural metaphor (direct manipulation)
 Encapsulation (info hiding)
 Class-instance
 Subclassing
 Prototype instances
 Message passing

9/26/2013

17

Standard UI Widgets
The “Macintosh 7”

 Button
 Slider
 Pulldown menu
 Check box
 Radio buttons
 Text entry fields
 File pick/save

1984

Influence on today’s GUIs

 The Macintosh 7 have become standard
(common) interaction techniques

 MFC as an example

 Sure enough, inside the Swing toolkit as well

9/26/2013

18

The good & the bad

 Collection of good interaction
techniques that work well
 uniformity is good for usability

 Significant stagnation
 Failing to customize interaction techniques

to tasks

CS 4470/6456 - Fall 2003

Example of non-standard
widget: Pie menus

 A circular pop-up menu with “dead area” at
center
 basically only angle counts

 What are Fitts’ law properties?
 minimum distance to travel
 minimum required accuracy (dependent on # of

options)
 very fast (dependent on # of options)

9/26/2013

19

CS 4470/6456 - Fall 2003

Pie menus

 How many of you have seen this before?

 Reasons why we don’t see these used?
 Just not known
 Hard to implement (draw labels) although there

are variations that are easier
 Don’t scale although there are variation that do

support hierarchy

Monolithic layered UI Architectures
don’t work well because...

 Modern interfaces: set of quasi-independent
agents
 Each “object of interest” is separate
 e.g. a button

 produces “button-like” output
 acts on input in a “button-like” way
 etc.

 Each object does its tasks based on
 What it is
 What its current “state” is

 Context from prior interaction or application

9/26/2013

20

Leads to object-based solutions

 Interactor objects
 AKA components, controls, widgets

 Each object implements each aspect
 In a way that reflects what it is

 Objects organized hierarchically
 Normally reflecting spatial containment

relationships
“Interactor trees”

Challenge

 How to minimize complexity of
individual objects?

 Three general approaches
 Inheritance
 Composition
 Aggregation

9/26/2013

21

Inheritance

 All concerns in one object/class
 inherit / override them separately
 works best with multiple inheritance
 example: draggable_icon

 inherit appearance from “icon”
 output aspects only

 inherit behavior from “draggable”
 input aspects only

Composition

 Put together interactive objects at
larger scale than interactors

 Container objects
 e.g., row and column layout objects

 Containers can also add input & output
behavior to things they contain

9/26/2013

22

Aggregation

 Different concerns in separate objects
 Treat collection as “the interactor”

 Classic architecture:
“model-view-controller” (MVC)
 from Smalltalk 80

MVC motivation
 The UI of an application is subject to many

changes:
 Change of UI for different users
 Same info can be shown in different windows
 Changes to underlying data should be reflected

quickly everywhere
 Changes to UI should be easy, even at runtime
 Different “look and feel” should not affect

functional core
 So separate processing, output, and input

9/26/2013

23

MVC

 MVC divides application into:
 Model of core functionality and data
 Views displaying information to user
 Controllers handling user input

 Views and Controllers comprise UI
 Change-propagation mechanism

ensures consistency between Model and
UI

MVC History
 Invented by Trygve Reenskaug and

introduced into the Smalltalk-80 programming
environment developed at Xerox PARC.

 Elements of MVC appear in many modern
GUIs (MFC, Swing, …)

 More info:
 Buschmann et al. (1996) Pattern-Oriented

Software Architecture. John Wiley & Sons, pp.
125-143.

9/26/2013

24

Model-View-Controller
Architecture

Model

View

Controller

Display

Inputs

What are the advantages to separating these?

Model

 Encapsulates application-specific data
and functionality, providing:
– methods to edit data, which Controller can

call
– methods to access state, which View and

Controller can request
 Maintains registry of dependent Views

and Controllers to be notified about
data changes

9/26/2013

25

Model Examples

 text editor: model is text string
 slider: model is an integer
 spreadsheet: collection of values related

by functional constraints

View

 Mechanism needed to map model data
to rendition (view / display)

 When Model changes, View is informed
 View requests relevant model information
 View arranges to update screen

 Declare damaged areas
 Redraw when requested

9/26/2013

26

View Examples

 Slider: text-field, line with bead, temp.
gauge

 Spreadsheet:
 Tabular representation
 Bar chart
 Histogram

Controller

 Accepts user input events
 Translates events into methods invoked

on Model
 Activates/Deactivates UI elements

(graying)

9/26/2013

27

Controller Examples

 Textual commands
 Mouse (point and click) commands
 No input

MVC Dynamics

 1. User input
event routed by
Window System to
appropriate
Controller.

 2. Controller may
require View to
“pick” object of
focus for event.

C

V

M

9/26/2013

28

MVC Dynamics

 3. Controller
requests method of
Model to change its
state.

 4. Model
changes its internal
state

C

V

M

MVC Dynamics

 5.Model notifies all
dependent Views
that data has
changed.

 6.View requests
from Model current
data values. C

V

M

9/26/2013

29

MVC Dynamics

 7. Model notifies
all dependent
Controllers that
data has changed.

 8. Controller
requests from
Model current data
values.

C

V

M

MVC Dynamics

 9. Controller
informs View if
elements are
disabled.

 10. View requests
redraw

C

V

M

9/26/2013

30

MVC: Pros and Cons
 Pros:

 Multiple views of same model
 Synchronized views
 Pluggable V & C and “look and feel”

 Cons:
 Complexity for simple interactors
 Potentially excessive updates/messages
 Tight coupling, in practice (V-C, VC-M)
 Lack of portability
 Some toolkits make MVC framework hard

Swing’s Modified MVC
Architecture (“Model-Delegate”)

 Collapse View & Controller
 Hard to write these independently
 Allows pluggable look and feel

Delegate

9/26/2013

31

CS 4470/6456 - Fall 2003

Example: pieces in a JButton

Interaction toolkit example

 Java SWING!
 Hold that thought…

9/26/2013

32

Swing is Notification based
class MyActionHandler implements ActionListener {

public void actionPerformed(ActionEvent event) {

System.out.println(“Somebody pushed me!”);

}

}

Button button1=new Button(“Push Me”);

button1.addActionListener(new MyActionHandler());

User Interface Management
Systems (UIMS)
 Specify complete UI behavior by declarative

specification

 Techniques for dialogue controller
• menu networks • state transition diagrams
• grammar notations • event languages
• declarative languages • constraints
• graphical specification

9/26/2013

33

Graphical specification
 what it is

 draw components on screen
 set actions with script or links to program

 in use
 with raw programming most popular technique
 e.g. Visual Basic, Dreamweaver, Flash

 local vs. global
 hard to ‘see’ the paths through system
 focus on what can be seen on one screen

HyperCard

9/26/2013

34

LabView

Research Example: SILK

9/26/2013

35

Swing & Netbeans

Java UI APIs

 AWT
 The original – now mostly obsolete.

 Swing
 The current standard.

 SWT (Standard Widget Toolkit)
 Open source widget toolkit.

 JavaFX
 Becoming new standard UI toolkit, but not as many

components available yet, can’t customize look-and-feel
(yet). Oracle plans to open source.

9/26/2013

36

AWT vs. Swing

 AWT used “heavy weight” components
 Uses native widget & processes

 Swing uses “light weight” components
 1997, 1.1.5
 Uses native window for top-level frame, but Swing

provides its own windowing system within the frame
 Even draws its own menus

 Thus,
 Can have “pluggable look-and-feel”
 Can be deployed on any device (with req’d libs)
 Many more (non-native) widgets

Pluggable Look-and-Feel

Java GTK+

Windows Mac

9/26/2013

37

Buttons

Combo Box

9/26/2013

38

Menus

Text Field

9/26/2013

39

Labels

Tool tips

9/26/2013

40

Embedded Panels

Advanced (not this homework)

9/26/2013

41

JApplet

A kind of Panel

Live Demo of NetBeans for
Applet Building

9/26/2013

42

Swing Homework – Create a
Restaurant Ordering Applet
 Two JLabels, one with an icon.
 Two JButtons, one with an icon.
 One JButtonGroup with at least 3 JRadioButton

options (with toggling between buttons functional).
 Two JCheckBoxes.
 One JComboBox with at least two items.
 One JTextField
 One JPanel with a titled border enclosing at least one

other component.
 One tool tip on one component.
 One Menu with at least two options.

Swing Events &
Graphics Primitives

9/26/2013

43

JApplet

A kind of Panel

Useful stuff
 Graphics getGraphics() called within JApplet

 Returns a ‘Graphics’ object
 Device-independent interface to graphics
 Basics (plus ‘fillX’ for most of these):

 drawLine(x1,y1,x2,y2);
 drawRect(x,y,w,h);
 drawOval(x,y,w,h)
 drawPolygon(int[] xpts,int[] ypts,numpts)
 drawString(“a string”,x,y)
 drawArc(x,y,w,h,startAngle,endAngle)

 setColor(Color)
 Notes: ‘java.awt’ pkg, coordinate system

9/26/2013

44

Colors
java.awt.Color

 Constructors
 Color(int R,int G,ing B) //0..255 ea
 Color(float R,float G,float B) //0..1

 Pre-defined as constants
 black,blue,cyan,darkGray,gray,green,

lightGray,magenta,orange,pink,red,white,
yellow

Event Model

 Swing Events are a subclass of
java.awt.AWTEvent (subclass of
java.util.EventObject)
 getSource() -> who produced it

9/26/2013

45

Swing is Notification based
class MyActionHandler implements ActionListener {

public void actionPerformed(ActionEvent event) {

System.out.println(“Somebody pushed me!”);

}

}

Button button1=new Button(“Push Me”);

button1.addActionListener(new MyActionHandler());

Events by Component
Component

ComponentEvent, FocusEvent,
KeyEvent, MouseEvent

Container
ContainerEvent

JRadioButton

JButton
JMenuItem

ActionEvent

JCheckbox
ItemEvent

Window
WindowEvent

JScrollbar
AdjustmentEvent

JTextComponent
TextEvent

JTextField
ActionEvent

JList
ActionEvent, ItemEvent

9/26/2013

46

Event Types
Event
Action
Adjustment
Component

Container
Focus
Item
Key
Mouse

Text

Listener Methods
actionPerformed()
adjustmentValueChanged()
componentHidden(), componentMoved(),
componentResized(), componentShown()
componentAdded(), componentRemoved()
focusGained(), focusLost()
itemStateChanged()
keyPressed(), keyReleased(), keyTyped()
MouseListener/MouseAdapter:
mouseClicked(), mouseEntered(), mouseExited(),
mousePressed(), mouseReleased()
MouseMotionListener/MouseMotionAdapter:
mouseDragged(), mouseMoved()
textValueChanged()

Some Event Methods

ItemEvent

KeyEvent

MouseEvent

getStateChange() //SELECTED | DESELECTED

getKeyChar(), getKeyCode()

getX(), getY(), getClickCount()

9/26/2013

47

NetBeans Example

To do

 Read
 Design (Dix Ch 5; Rosson Ch 3)

 Due: T2 – Requirements Analysis
 Start Homework I4 – Swing & Netbeans

