
9/26/2013

1

Human-Computer Interaction
IS4300

I3: Ethnography

9/26/2013

2

T2: Requirements Analysis
Review…

User Analysis
Task Analysis

Problem Scenarios
Usability Criteria

Implementation Support

Dix Chapter 8

9/26/2013

3

Exercise

 Your engineers just developed a
new desktop computer.

 They give you the following
primitives:
 drawPixel(x,y,color)
 readMouseX(), readMouseY(),

readMouseButton(), readKey()

 They ask you to implement this:

Levels of Abstraction
in UI Software

 Windowing systems
 central environment for both the programmer and user of an

interactive system, allowing a single workstation to support separate
user-system threads of action simultaneously.

 Interaction toolkits
 abstract away from the physical separation of input and output

devices, allowing programmer to describe behaviors of objects at a
level similar to how the user perceives them.

 User interface management systems
 Allows designer and programmer to control the relationship between

the presentation objects of a toolkit with their functional semantics in
the actual application.

 Application

9/26/2013

4

Toolkit

Levels of Abstraction

I/O Devices

Layered Drawing/Windows

W
indow

 Sys

O
S

H
ardw

are

Input/Output Abstraction

Elements of windowing
systems
Device independence

programming the abstract terminal device drivers
image models for output and (partially) input

 pixels
 PostScript (MacOS X, NextStep)
 Graphical Kernel System (GKS)
 Programmers' Hierarchical Interface to Graphics (PHIGS)

Resource sharing
achieving simultaneity of user tasks
window system supports independent processes
isolation of individual applications

9/26/2013

5

roles of a windowing system

Architectures of windowing
systems
three possible software architectures

 all assume device driver is separate
 differ in how multiple application management is implemented

1. each application manages all processes
 everyone worries about synchronization
 reduces portability of applications

2. management role within kernel of operating system
 applications tied to operating system

3. management role as separate application
maximum portability

9/26/2013

6

Human Perception and
Displays

 Split a picture into a collection of small
dots and we can reconstruct it.
 pixels and resolution

 Present consecutive “frames” of a
dynamic scene and we can smooth it.
 > 15 frames per second refresh rate

Painting a picture

 Each memory cell controls 1 pixel

1

Frame buffer display surface

9/26/2013

7

Size of Frame Buffer
 Resolution

 # of pixels
 1024 X 768 = 786432

 Color
 Black & White – 1 bit per pixel

 Grayscale – multiple bits vary intensity

 Color Depth – 3 (R, G & B) values

True Color

 Humans can distinguish ~ 2^8 different
gradations for each of R, G & B

 3 bytes or 24-bits is all you need

 For transparency, we can add an extra
byte.

9/26/2013

8

Software models of output

 Also called imaging model

 Abstracts away the hardware
component

 Stroke (or vector) model
 Pixel (or raster) model
 Region model

Vector model
 Earliest imaging model

 abstracted hardware vector refresh

 Advantages
 can freely apply mathematical xforms

 Scale rotate, translate
 Only have to manipulate endpoints

 Disadvantages
 limited / low fidelity images

 wireframe, no solids, no shading

9/26/2013

9

Raster (pixel) model

 Most systems provide model pretty close to
raster display hardware

 integer coordinate system

 0,0 typically at top-left with Y down

 all drawing primitives done by filling in pixel color
values

Region model

 All drawing modeled as placing paint on a
surface through a “stencil”
 Stencil modeled as closed curves (e.g., splines)

 Postscript model is based on this approach
 Dominant model for hardcopy, but not screen
 There are display systems based on Postscript

9/26/2013

10

Region model
 Advantages

 Resolution & device independent
 does best job possible on avail HW
 Don’t need to know size of pixels

 Can support full transformations
 rotate & scale

 Disadvantages
 Slower

 Less and less of an issue
 But interactive response tends to be dominated by

redraw time
 Much harder to implement

A Hierarchy of Windows

 Most UIs are described as a collection of
hierarchically ordered windows or elements
(called interactors).
 Top of “tree” or root is whole display

 Geometric relationships (containment,
overlap) are important.

9/26/2013

11

Output and the Interactor
Tree

output is organized around the tree
structure

 each object has own behaviors & states
 can draw itself
 can do other tasks
 knows own capabilities and those of children

 generic tasks are specialized to specific
subclasses

Output Tasks in Windowing
Systems

 3 main tasks

 draw / redraw

 damage management

 layout

9/26/2013

12

Drawing

each object knows how to create its own
appearance

local drawing

traverse interactor tree

request children to draw themselves

Damaging Windows

windows suffer “damage” when they are
obscured then exposed (and when
resized)

9/26/2013

13

Damage Management

each object reports its own damage to
its parent

collect damaged regions at top/root
interactor level

arrange for redraw of damaged areas at
the top

Redrawing

when damage occurs, system schedules
a redraw

need to first ensure that everything is in
the right place and is the right size

9/26/2013

14

Drawing issue
 cannot size and position as we draw

 look of first child might depend on last child’s
size

 arbitrary dependencies

 may not follow redraw order

 need to compute layout prior to starting to
draw

Programming the application

read-evaluation loop

repeat
read-event(myevent)
case myevent.type

type_1:
do type_1 processing

type_2:
do type_2 processing

...
type_n:

do type_n processing
end case

end repeat

9/26/2013

15

Programming the application

notification-based
void main(String[] args) {

Menu menu = new Menu();
menu.setOption(“Save”);
menu.setOption(“Quit”);
menu.setAction(“Save”,mySave)
menu.setAction(“Quit”,myQuit)

...
}

int mySave(Event e) {
// save the current file

}

int myQuit(Event e) {
// close down

}

Read-eval loop vs.
Notifications

 Pros & Cons of each?

9/26/2013

16

Using interaction toolkits
Interaction objects
 input and output

intrinsically linked

Toolkits provide this level of abstraction
 programming with interaction objects (or widgets, gadgets)
 promote consistency and generalizability through similar look and feel
 amenable to object-oriented programming

move press release move

Objects and the UI

 Why are they so well suited?
 Natural metaphor (direct manipulation)
 Encapsulation (info hiding)
 Class-instance
 Subclassing
 Prototype instances
 Message passing

9/26/2013

17

Standard UI Widgets
The “Macintosh 7”

 Button
 Slider
 Pulldown menu
 Check box
 Radio buttons
 Text entry fields
 File pick/save

1984

Influence on today’s GUIs

 The Macintosh 7 have become standard
(common) interaction techniques

 MFC as an example

 Sure enough, inside the Swing toolkit as well

9/26/2013

18

The good & the bad

 Collection of good interaction
techniques that work well
 uniformity is good for usability

 Significant stagnation
 Failing to customize interaction techniques

to tasks

CS 4470/6456 - Fall 2003

Example of non-standard
widget: Pie menus

 A circular pop-up menu with “dead area” at
center
 basically only angle counts

 What are Fitts’ law properties?
 minimum distance to travel
 minimum required accuracy (dependent on # of

options)
 very fast (dependent on # of options)

9/26/2013

19

CS 4470/6456 - Fall 2003

Pie menus

 How many of you have seen this before?

 Reasons why we don’t see these used?
 Just not known
 Hard to implement (draw labels) although there

are variations that are easier
 Don’t scale although there are variation that do

support hierarchy

Monolithic layered UI Architectures
don’t work well because...

 Modern interfaces: set of quasi-independent
agents
 Each “object of interest” is separate
 e.g. a button

 produces “button-like” output
 acts on input in a “button-like” way
 etc.

 Each object does its tasks based on
 What it is
 What its current “state” is

 Context from prior interaction or application

9/26/2013

20

Leads to object-based solutions

 Interactor objects
 AKA components, controls, widgets

 Each object implements each aspect
 In a way that reflects what it is

 Objects organized hierarchically
 Normally reflecting spatial containment

relationships
“Interactor trees”

Challenge

 How to minimize complexity of
individual objects?

 Three general approaches
 Inheritance
 Composition
 Aggregation

9/26/2013

21

Inheritance

 All concerns in one object/class
 inherit / override them separately
 works best with multiple inheritance
 example: draggable_icon

 inherit appearance from “icon”
 output aspects only

 inherit behavior from “draggable”
 input aspects only

Composition

 Put together interactive objects at
larger scale than interactors

 Container objects
 e.g., row and column layout objects

 Containers can also add input & output
behavior to things they contain

9/26/2013

22

Aggregation

 Different concerns in separate objects
 Treat collection as “the interactor”

 Classic architecture:
“model-view-controller” (MVC)
 from Smalltalk 80

MVC motivation
 The UI of an application is subject to many

changes:
 Change of UI for different users
 Same info can be shown in different windows
 Changes to underlying data should be reflected

quickly everywhere
 Changes to UI should be easy, even at runtime
 Different “look and feel” should not affect

functional core
 So separate processing, output, and input

9/26/2013

23

MVC

 MVC divides application into:
 Model of core functionality and data
 Views displaying information to user
 Controllers handling user input

 Views and Controllers comprise UI
 Change-propagation mechanism

ensures consistency between Model and
UI

MVC History
 Invented by Trygve Reenskaug and

introduced into the Smalltalk-80 programming
environment developed at Xerox PARC.

 Elements of MVC appear in many modern
GUIs (MFC, Swing, …)

 More info:
 Buschmann et al. (1996) Pattern-Oriented

Software Architecture. John Wiley & Sons, pp.
125-143.

9/26/2013

24

Model-View-Controller
Architecture

Model

View

Controller

Display

Inputs

What are the advantages to separating these?

Model

 Encapsulates application-specific data
and functionality, providing:
– methods to edit data, which Controller can

call
– methods to access state, which View and

Controller can request
 Maintains registry of dependent Views

and Controllers to be notified about
data changes

9/26/2013

25

Model Examples

 text editor: model is text string
 slider: model is an integer
 spreadsheet: collection of values related

by functional constraints

View

 Mechanism needed to map model data
to rendition (view / display)

 When Model changes, View is informed
 View requests relevant model information
 View arranges to update screen

 Declare damaged areas
 Redraw when requested

9/26/2013

26

View Examples

 Slider: text-field, line with bead, temp.
gauge

 Spreadsheet:
 Tabular representation
 Bar chart
 Histogram

Controller

 Accepts user input events
 Translates events into methods invoked

on Model
 Activates/Deactivates UI elements

(graying)

9/26/2013

27

Controller Examples

 Textual commands
 Mouse (point and click) commands
 No input

MVC Dynamics

 1. User input
event routed by
Window System to
appropriate
Controller.

 2. Controller may
require View to
“pick” object of
focus for event.

C

V

M

9/26/2013

28

MVC Dynamics

 3. Controller
requests method of
Model to change its
state.

 4. Model
changes its internal
state

C

V

M

MVC Dynamics

 5.Model notifies all
dependent Views
that data has
changed.

 6.View requests
from Model current
data values. C

V

M

9/26/2013

29

MVC Dynamics

 7. Model notifies
all dependent
Controllers that
data has changed.

 8. Controller
requests from
Model current data
values.

C

V

M

MVC Dynamics

 9. Controller
informs View if
elements are
disabled.

 10. View requests
redraw

C

V

M

9/26/2013

30

MVC: Pros and Cons
 Pros:

 Multiple views of same model
 Synchronized views
 Pluggable V & C and “look and feel”

 Cons:
 Complexity for simple interactors
 Potentially excessive updates/messages
 Tight coupling, in practice (V-C, VC-M)
 Lack of portability
 Some toolkits make MVC framework hard

Swing’s Modified MVC
Architecture (“Model-Delegate”)

 Collapse View & Controller
 Hard to write these independently
 Allows pluggable look and feel

Delegate

9/26/2013

31

CS 4470/6456 - Fall 2003

Example: pieces in a JButton

Interaction toolkit example

 Java SWING!
 Hold that thought…

9/26/2013

32

Swing is Notification based
class MyActionHandler implements ActionListener {

public void actionPerformed(ActionEvent event) {

System.out.println(“Somebody pushed me!”);

}

}

Button button1=new Button(“Push Me”);

button1.addActionListener(new MyActionHandler());

User Interface Management
Systems (UIMS)
 Specify complete UI behavior by declarative

specification

 Techniques for dialogue controller
• menu networks • state transition diagrams
• grammar notations • event languages
• declarative languages • constraints
• graphical specification

9/26/2013

33

Graphical specification
 what it is

 draw components on screen
 set actions with script or links to program

 in use
 with raw programming most popular technique
 e.g. Visual Basic, Dreamweaver, Flash

 local vs. global
 hard to ‘see’ the paths through system
 focus on what can be seen on one screen

HyperCard

9/26/2013

34

LabView

Research Example: SILK

9/26/2013

35

Swing & Netbeans

Java UI APIs

 AWT
 The original – now mostly obsolete.

 Swing
 The current standard.

 SWT (Standard Widget Toolkit)
 Open source widget toolkit.

 JavaFX
 Becoming new standard UI toolkit, but not as many

components available yet, can’t customize look-and-feel
(yet). Oracle plans to open source.

9/26/2013

36

AWT vs. Swing

 AWT used “heavy weight” components
 Uses native widget & processes

 Swing uses “light weight” components
 1997, 1.1.5
 Uses native window for top-level frame, but Swing

provides its own windowing system within the frame
 Even draws its own menus

 Thus,
 Can have “pluggable look-and-feel”
 Can be deployed on any device (with req’d libs)
 Many more (non-native) widgets

Pluggable Look-and-Feel

Java GTK+

Windows Mac

9/26/2013

37

Buttons

Combo Box

9/26/2013

38

Menus

Text Field

9/26/2013

39

Labels

Tool tips

9/26/2013

40

Embedded Panels

Advanced (not this homework)

9/26/2013

41

JApplet

A kind of Panel

Live Demo of NetBeans for
Applet Building

9/26/2013

42

Swing Homework – Create a
Restaurant Ordering Applet
 Two JLabels, one with an icon.
 Two JButtons, one with an icon.
 One JButtonGroup with at least 3 JRadioButton

options (with toggling between buttons functional).
 Two JCheckBoxes.
 One JComboBox with at least two items.
 One JTextField
 One JPanel with a titled border enclosing at least one

other component.
 One tool tip on one component.
 One Menu with at least two options.

Swing Events &
Graphics Primitives

9/26/2013

43

JApplet

A kind of Panel

Useful stuff
 Graphics getGraphics() called within JApplet

 Returns a ‘Graphics’ object
 Device-independent interface to graphics
 Basics (plus ‘fillX’ for most of these):

 drawLine(x1,y1,x2,y2);
 drawRect(x,y,w,h);
 drawOval(x,y,w,h)
 drawPolygon(int[] xpts,int[] ypts,numpts)
 drawString(“a string”,x,y)
 drawArc(x,y,w,h,startAngle,endAngle)

 setColor(Color)
 Notes: ‘java.awt’ pkg, coordinate system

9/26/2013

44

Colors
java.awt.Color

 Constructors
 Color(int R,int G,ing B) //0..255 ea
 Color(float R,float G,float B) //0..1

 Pre-defined as constants
 black,blue,cyan,darkGray,gray,green,

lightGray,magenta,orange,pink,red,white,
yellow

Event Model

 Swing Events are a subclass of
java.awt.AWTEvent (subclass of
java.util.EventObject)
 getSource() -> who produced it

9/26/2013

45

Swing is Notification based
class MyActionHandler implements ActionListener {

public void actionPerformed(ActionEvent event) {

System.out.println(“Somebody pushed me!”);

}

}

Button button1=new Button(“Push Me”);

button1.addActionListener(new MyActionHandler());

Events by Component
Component

ComponentEvent, FocusEvent,
KeyEvent, MouseEvent

Container
ContainerEvent

JRadioButton

JButton
JMenuItem

ActionEvent

JCheckbox
ItemEvent

Window
WindowEvent

JScrollbar
AdjustmentEvent

JTextComponent
TextEvent

JTextField
ActionEvent

JList
ActionEvent, ItemEvent

9/26/2013

46

Event Types
Event
Action
Adjustment
Component

Container
Focus
Item
Key
Mouse

Text

Listener Methods
actionPerformed()
adjustmentValueChanged()
componentHidden(), componentMoved(),
componentResized(), componentShown()
componentAdded(), componentRemoved()
focusGained(), focusLost()
itemStateChanged()
keyPressed(), keyReleased(), keyTyped()
MouseListener/MouseAdapter:
mouseClicked(), mouseEntered(), mouseExited(),
mousePressed(), mouseReleased()
MouseMotionListener/MouseMotionAdapter:
mouseDragged(), mouseMoved()
textValueChanged()

Some Event Methods

ItemEvent

KeyEvent

MouseEvent

getStateChange() //SELECTED | DESELECTED

getKeyChar(), getKeyCode()

getX(), getY(), getClickCount()

9/26/2013

47

NetBeans Example

To do

 Read
 Design (Dix Ch 5; Rosson Ch 3)

 Due: T2 – Requirements Analysis
 Start Homework I4 – Swing & Netbeans

