

Human-Computer Interaction IS 4300

Prof. Timothy Bickmore

Overview for Today

- Introductions
- Overview of the Course
- Logistics
- Overview of HCI
- Some basic concepts
- Overview of Team Projects

Introductions

- Name
- Your background
- Worst user interface you have ever used & why

Overview of Course

ccs.neu.edu/course/is4300f13/

Course Website

IS4300- Human-Computer Interaction

[Syllabus] [Schedule] [Homework] [Projects] [Resources] [Directory]

Schedule

Date	Topics & Readings	Assignments	
		Due	Start
9/5	Overview of HCI and course. Getting started on projects.		<u>I1,P1</u>
9/9	HCI development process (Dix Ch 6). Critical Analysis of UIs (Dix Ch 7)		<u>12</u>
9/12	Humans (Dix Ch 1). Team project brainstorming.	I1	
9/16	Computers (skim Dix Ch 2). Doing observational studies, Fetterman; Example 1; Example 2).	12	<u>13</u>
9/19	Interaction (Dix Ch 3-4).	P1a	
9/23	Requirements analysis: Users & Tasks (Dix Ch 13 & 15), Scenarios (Rosson part of Ch 2), Intro to Usability.	P1b	<u>P2</u>
9/26	GUI Software Architecture (Dix Ch 8). [Intro to Java Swing (1st three)]	13	<u>14</u>

Overview of Course

- Topics covered
 - HCI Practice
 - HCI Programming
 - ... and a little theory & research
- Prerequisites
 - Official: CS 3500 Object-Oriented Design
 - Java basics (you must be proficient in 3 weeks)

Overview of Course

- Texts
 - Req'd: Dix, et al, Human-Computer Interaction
 - Opt: Nielsen, Usability Engineering (\$11 digital)

HUMAN-COMPUTER

 Opt: Rosson & Carroll, Usability Engineering: Scenario-Based Development of Human-Computer Interaction

Overview of Course

- Weekly Requirements
 - Read ~50 pages
 - Individual homework assignment
 - Project assignment
 - In-class Quiz
 - Describe and discuss assignments in class

Typical Class

- Occasional Quiz
- 2. Review assignments. Presentation and discussion by randomly selected students.
- 3. Lecture on HCI practice topic.
- 4. In class exercise
- Discussion of next week's assignments.

Overview of Course

- Quizzes
 - Check understanding and ramifications of readings.
 - Usually 1-2 questions directly from readings, possibly applying the material to a new problem.
 - "Describe the Squishy Interface."
 - "Describe two usability metrics appropriate for a new xbox game."
 - "Give an example of inter-application consistency."

Administrivia

- Tim
 - WVH448, <u>is4300f13@ccs.neu.edu</u>
 - Office hours: Weds 2:30-4:30, or by appt.
 - In class prior to start (NOT AFTER)
- TA TBD
- Class: <u>is4300f13-all@ccs.neu.edu</u>

Schedule

Date **Topics & Readings** Overview of HCI and course. Getting started on projects. 5-Sep 9-Sep HCI development process (Dix Ch 6). Critical Analysis of UIs (Dix Ch 7) 12-Sep Humans (Dix Ch 1). Team project brainstorming. 16-Sep Computers (skim Dix Ch 2). Doing observational studies... 19-Sep Interaction (Dix Ch 3-4). 23-Sep Requirements analysis: Users & Tasks (Dix Ch 13 & 15), Scenarios (Rosson part of Ch 2), Intro to Usability. 26-Sep GUI Software Architecture (Dix Ch 8). [Intro to Java Swing (1st three)] 30-Sep Design I (Dix Ch 5; Rosson Ch 3). 3-Oct Design II (Rosson Ch 4 & 5). [Swing events.] 7-Oct Design III. UI Design Layout principles. Interface design guidelines. 10-Oct Evaluation (Dix Ch 9). [Swing layout managers] 14-Oct HOLIDAY 17-Oct Paper prototyping (Rettig).

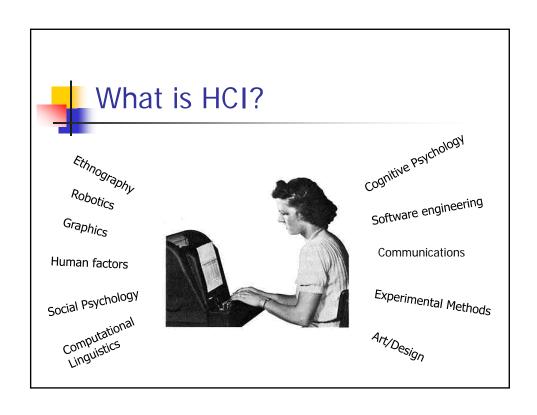
Schedule

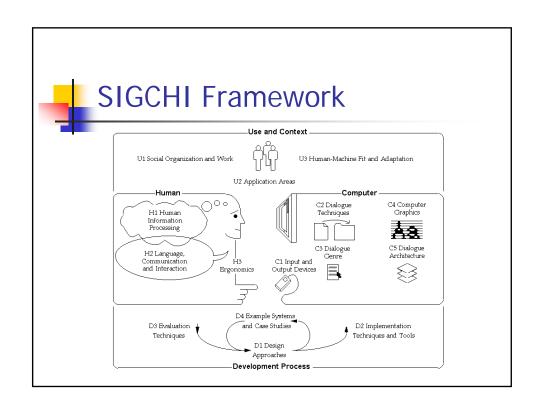
Topics & Readings Date 21-Oct Universal design (Dix Ch 10). Intro to usability studies. In class paper prototyping rehearsal. Sample user briefing. 24-Oct User support (Dix Ch 11). Reporting usability test results. Usability report template (usability.gov). 28-Oct [GUEST LECTURE] 31-Oct Communication & Collaboration (Dix Ch 14). **Embodied Conversational Agents.** 4-Nov CSCW (Dix Ch 19) Expert evaluation. Cognitive models (Dix Ch 12). 7-Nov Heuristic Evaluation (review Dix Ch 7; Nielsen Ch 5, Nielsen, Pinelle) 11-Nov HOLIDAY 14-Nov Designing Embedded & Mobile UIs (Dix Ch 20, Leung, Chaudry) 18-Nov Usability testing (Nielsen Ch 6). Other assessment methods (Nielsen Ch 7). Motivation for Usability (Nielsen Ch 1). 21-Nov Designing for the Web (Dix Ch 21). 25-Nov Case study (Gould). Review for Final. 28-Nov HOLIDAY Final Project Presentations. 2-Dec TBD Final Exam

Grading

- Quizzes (10%).
- Class participation (10%).
- Individual homework (25% divided equally among graded assignments).
- Team project (30%, comprised of 10% for each of T1-T8, 20% for T9).
- Final Exam (25%)

Overview of HCI


- What is HCI?
- Motivation for HCI
- Some basic concepts



What is HCI?

ACM SIGCHI Curricula for HCI

 Human-computer interaction is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them.

What is HCI? extensional definition

- Human factors
- GUIs & toolkits
- Mobile computing
- Speech interfaces
- Social interfaces
- Multimodal interfaces
- **.** . . .

What do UI professionals do?

- interaction designers people involved in the design of all the interactive aspects of a product
- usability engineers people who focus on evaluating products, using usability methods and principles
- web designers people who develop and create the visual design of websites, such as layouts
- mobile app designers
- information architects people who come up with ideas of how to plan and structure interactive products
- user experience designers (UX) people who do all the above but who may also carry out field studies to inform the design of products

Why Study HCI?

HCI is Important

from Nielsen - Usability Engineering

- Redesign of rotary dial telephone speeded up users' dialing behavior by 0.15 sec/digit, saving \$1M in reduced demand on central switches.
- Redesign insurance forms to reduce customer errors: cost Aus\$100,000; savings Aus\$500,000/year.
- Redesign of Boeing 757 flight deck interface to reduce flight crew from 3 to 2

from Nielsen - Usability Engineering

- Study of software engineering costs
 - 63% significantly overran budgets
 - 4 reasons rated with highest responsibility:
 - Frequent change requests by users
 - Overlooked tasks
 - Users' lack of understanding of their own req'ts
 - Insufficient user-analyst communication & understanding

Lederer & Prasad, CACM '92 115 surveys of projects >=\$50K

HCI is Important

- UI strongly affects perception of software
 - Usable software sells better
 - "Ease of use" ratings
- For many shrinkwrapped products a single call to customer support can wipe out profits

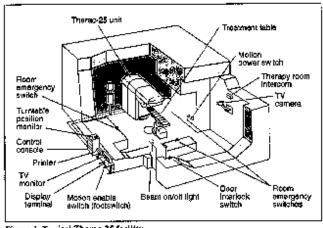
FDA Center for Devices and Radiological Health report

- Many deaths and injuries attributable to poor human interface (hardware & software) design.
 - oxygen flow control knob, smooth rotation but with discrete settings and no flow at intermediates

HCI is Important

JAMA. 2005;293:1197-1203

- Study of a hospital computerized physician order entry system (CPOE)
 - Identified 22 ways in which the system caused patients to get the wrong medicine, e.g.
 - fragmented displays that prevent a coherent view of patients' medications
 - pharmacy inventory displays mistaken for dosage guidelines
 - separation of functions that facilitate double dosing and incompatible orders



■ Three quarters of the house staff reported observing each of these error risks, indicating that they occur weekly or more often

Therac-25 Accidents

Therac-25
performed
both
radiation
treatment
and X-rays

Figure 1. Typical Therae-25 facility.

HCI is Important

Therac-25 Accidents

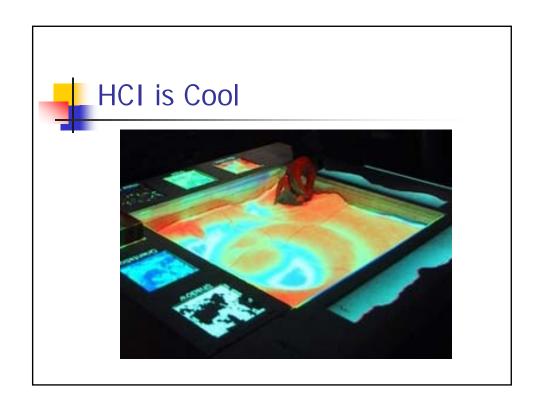
PATIENT NAME : TEST TREATMENT MODE: FIX BEAM TYPE: X ENERGY (KeV): 25 ACTUAL 0 200 50 50 200 PRESCRIBED UNIT RATE/MINUTE
MONITOR UNITS
----200 0.27 TIME (MIN) 1.00 O VERIFIED GANTRY ROTATION (DEG) 0.0 COLLIMATOR ROTATION (DEG) 359.2 359 VERIFIED 14.2 14.3 VERIFIED 27.2 27.3 VERIFIED COLLIMATOR X (CM) COLLIMATOR Y (CM) WEDGE NUMBER 1 VERIFIED O VERIFIED ACCESSORY NUMBER

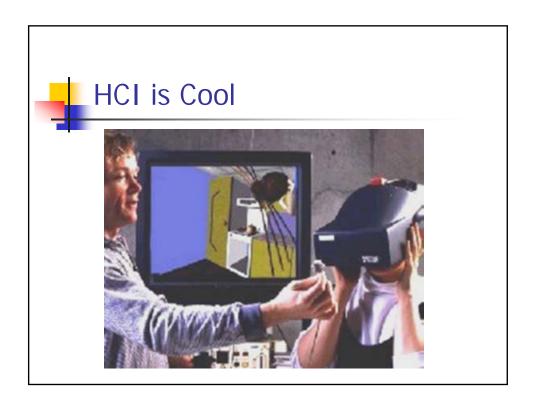
 DATE : 84-OCT-26
 SYSTEM: BEAM READY
 OP.MODE: TREAT
 AUTO

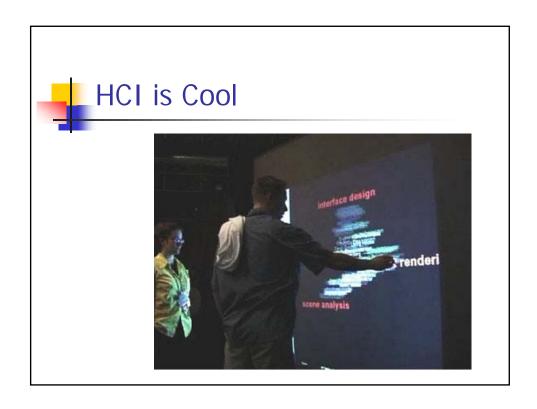
 TIME : 12:55.8
 TREAT : TREAT PAUSE
 X-RAY
 173

 OPR ID: T25VO2-RO3
 REASON: OPERATOR
 COMMAND:

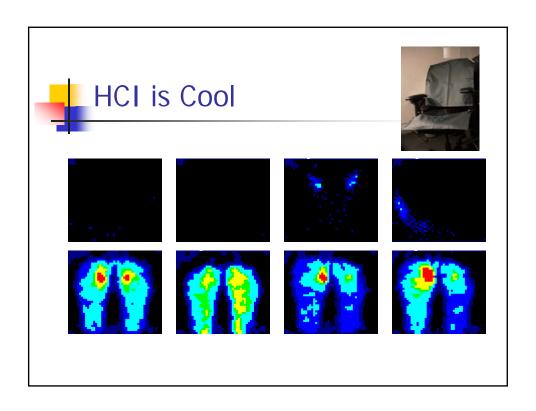
 173777

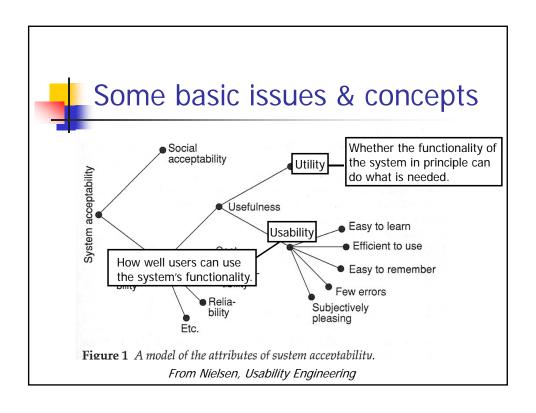

Therac-25 Accidents

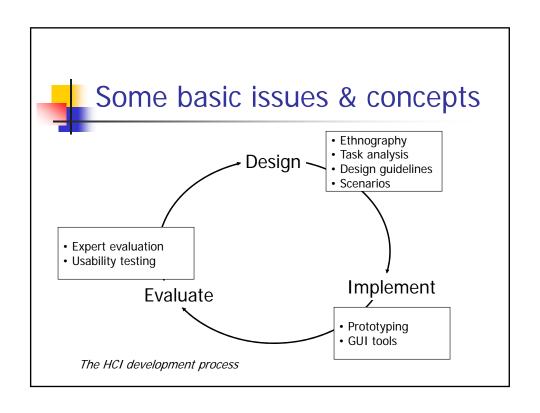

- Six accidents involving massive overdoses to patients occurred between 1985 and 1987
- Occasional machine malfunctions with little feedback, resulting in repeated dosages (6 in one case)
- Poor feedback about which mode the machine was in caused treatments with 125x the expected dose
- Machine occasionally underreported dosage




Why do work in HCI?


- Interdisciplinary work
- Interact with people, learn about them and their work
- Help people
- It's cool...





Some basic issues & concepts

- Building good UIs is hard
 - Many iterations
 - Much user interaction
 - Many kinds of expertise
 - 50% of the total lifecycle effort in modern software
 - Survey of 74 projects, Myers & Rosson, CHI'92

Semester Project

Project Guidelines

- Must have a substantial UI
- UI must be interactive
- Creative, original, non-obvious is better
- Ideas: research papers & past CHI, UIST, IUI, CSCW
- Each team <u>must</u> have 1-2 members
- Ideally complementary skills

To Do for Next Week

- Read
 - HCI development process (Dix Ch 6).
 - Critical Analysis of UIs (Dix Ch 7)
- Set up individual course web page (I1 1 week)
- Start getting up to speed on Java basics.
- Project P1 (thinking about projects 2.5 weeks)
 - In one week: post 3 project ideas
- Review CHI Proceedings for inspiration.
- Note: All assignments must be posted 1 hour before class on due date.