CS1800
10120-Fi ! !
Admin

- Haws out next Fir
- Back to recitations next week

Agenda

1. Basic Probability
2. Expected Valve
counting sets
3. Variance
4. Basic Probability

- Set czrdintality $|0|$ - \#of distinct elements
- Cartesian Product $A x B-\{(2, b) \mid z \in A \wedge b \in B\}$
- Product re m.n - "and"
- Sum rue $m+n$ - "or"
- Pigeonhole - makes guarantees

Probability
G measures likelihood of events

- experiment - procedure, ∞ repeatable, well-defired set of outcomes
- Sample space - Set of ail possible at comes of an experiment $S=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$
- event space - Subset of sample space

$$
E \subseteq S
$$

Die - 6 sides

$$
1,2,3,4,5,6
$$

roll a die \sim experiment
$S=\{1,2,3,4,5,6\} \quad$ Probabiity of event E

$$
\begin{aligned}
& |S|=6 \\
& E=\{6\} \\
& |E|=1 \\
& \quad \operatorname{Pr}(6)=\frac{|E|}{|s|}=\frac{1}{6} \\
& E=\{2,4,6\} \quad \operatorname{Pr}(E)= \\
& |E|=\operatorname{Pen})=\frac{|E|}{|8|}=\frac{3}{6}=\frac{1}{2}
\end{aligned}
$$

Rolling trodice
acet $\quad S=\{1,2,3,4,5,6\}=161$
die \#2 $\left.S_{2}=\{1,2,3,4,5,6\}=16\right\}$
carkeran proouct - conered parts

$$
\begin{aligned}
&\{(1,1),(1,2),(1,3) \ldots,(6,6)\} \\
&\left|S \times S_{2}\right|=36
\end{aligned}
$$

sumple space
81 (geting 2 3 and 4 , in either cocter)

$$
E=\{(3,4),(4,3)\}
$$

$$
\rightarrow \frac{|E|}{|s|}=\frac{2}{36}=\frac{1}{18}
$$

(ex) Craps in Old Vegas
First roll \sim sun of 2 dice

- win: $7, l$
- lose: 2,3,12

Pr(win)?

$$
\begin{aligned}
& |s|=36 \\
& E=\{(1,6),(6,1),(3,4),(4,5), \\
& \quad(3,5),(5,2),(6,5),(5,6)\} \\
& |E|=8 \\
& P_{6}(w, n)=\frac{0}{36}=\frac{2}{9}
\end{aligned}
$$

Q: why roll two dice $|s|=36$

In craps example ~ pr of wee possible at comes

$$
\begin{aligned}
& \text { Irwin Ya } \\
& \text { lose aq } \\
& \operatorname{Pr}\left(s_{1}\right)+\operatorname{Pr}\left(S_{2}\right)+\ldots+\operatorname{Pr}\left(S_{n}\right)=1 \\
& \operatorname{Pr}(\text { neither })=\frac{1-3 / 9}{6 / 9} \longrightarrow \text { subtraction / complement } \\
& =6 / 9 \\
& =2_{3}
\end{aligned}
$$

(ex) Pigeonhole makes guarantees!
200 onus
12 morns layer $\}$ zit horst che month has
at least 17 of us
Probability is what's likely, unlikely

- Assume: zee birthday mantas equally likely

$$
\operatorname{Pr}(\text { born in Sept })=1 / 12
$$

$\operatorname{PC}($ share barn with Liner $)=1,2$

$$
\operatorname{Pr}(b o n \text { in not sept })=11 / 12
$$

(ex) 10 of us in the rom
$\operatorname{Pr}($ well 10 ban in Sept)
Product \sim ul.
$\operatorname{Pr}(A$ in Sep $)$ and $\operatorname{nr}(B$ in Sep) And $\ldots \operatorname{Pr}(J$ in sep $)$

$$
\operatorname{Pr}(\text { zee } 10)=1 / 12 \cdot 1 / 12 \cdot 1 / 2 \cdot \cdots 1 / 12=(1 / 12)^{10}
$$

$$
10 \text { peypue } \quad=1.615 e^{2} 11
$$

Pr(at least che bom insep) 1- Pr (rcre insept)

$$
1-\left(\frac{11}{12}\right)^{10}=58
$$

Gsubtraction revi.

Pr (nore boin in Sep)

$$
\left(\frac{11}{12}\right)^{10}=.418
$$

C2se1: exactlyane
(rxe 2: exactiy two
crse 10: exactry 10 ang:
2. Expected Valve
n_{n} the expeninent os times, what happens on average?
not guarantee about the outcome of che experiment

Randan Variable

- not randan, not variable
- $X=$ valve associated with out cane ot an experiment
- numeric \rightarrow same value tied to outcomes
- $E[X]$ - what is arg X over a expenments
(ex) Rolling one dill
X is RV 2esociafed with number on die $\operatorname{Pr}(x=3)$ - $\operatorname{Pr} x$ is valve 3 after experiment

What is E[x]?

$$
E[X]=\sum \operatorname{Pr}\left(s_{i}\right) \cdot x_{i}
$$

- every atone si has prob. $\operatorname{Pr}\left(s_{i}\right)$
- every ot ane si has salve x_{i}
- eventhing in sample
(ex) Lang's bet on Aces to win ur
$X=$ RU 2 associated with outcome of game (\$)
2 out cones: win, lose
Every outcome has prob. and valve

$$
\begin{array}{ll}
& \operatorname{Pr}\left(s_{i}\right) \\
\operatorname{Pr}(\text { win })=.60 & \operatorname{Pr}(10 x)=.40 \\
X_{\text {win }}=30 & X_{\text {lose }}=-30 \\
E[X]=(60)(30)+(.40)(-30) \\
=\$ 6
\end{array}
$$

(ex) Flip a coin (Fair)

$$
\begin{aligned}
& \text { Outcomes }=H, T \\
& X=R V \text { associated with } \quad \text { tails } \\
& \operatorname{Pr}(H)=.5 \quad \operatorname{Pr}(T)=5 \\
& X_{H}=0 \quad X_{T}=1 \\
& E[X]=(.5)(0)+(.5)(1)=.5
\end{aligned}
$$

Fareseryone... Hlip x coin 3 times (experiment)

- Htrails (X)
- atcomes: HHH, HHT, HTH, THH, ...

$$
\begin{aligned}
& E[x]=? \\
& \operatorname{Pr}(x=0)=1 / 8 \\
& \operatorname{Pr}(x=1)=3 / 8 \\
& \operatorname{Pr}(x=2)=3 / 8 \\
& \operatorname{Pr}(x=3)=1 / 8
\end{aligned}
$$

THH, HTH, HHT
THH, THT, HTT

$$
\begin{aligned}
E[x] & =1 / 8 \cdot 0+3 / 8 \cdot 1+3 / 8 \cdot 2+\frac{1}{8} \cdot 3 \\
& \operatorname{Pr}(x \cdot 0) \text { uspe } \\
& =0+3 / 8+6 / 8+3 / 8 \\
& =12 / 8=1.5
\end{aligned}
$$

Shortcut EV formula $\}$ lincrity of expectation

- same expriment $>$ encrity

$$
\begin{aligned}
& E[\# \text { trails in } 3 \text { tosses }]=E[\# \text { tails in tors 1] } E[\text { \#tails in toos } 2] \\
& \\
& +E[\# \text { trals in foos } 3]
\end{aligned}
$$

3 łips

$$
E[\# \text { trils intoos } 1]=0.5+1: 5=.5
$$

Ls indiczitors

$$
E[x]=(.5)(100)
$$

lookips

