Day 10:
Admin:

- practice exam on gradescope
- review exam instructions
- hw4 note:
- please compute (and round) final value in counting problems (as HW instructions indicate)
- hw4 dates:
- due Friday @ 11:59 PM
- late due date is Saturday @ 11:59 PM
- solutions are available Sunday @ 12:10 AM

Content:

- combinations
- leftover principle
- counting partitions of identical objects

$$
P(5,3)=\frac{5!}{\partial!}=5 \cdot 4 \cdot 3=\frac{60}{4}
$$

Over-counting (multiplicative)

How many people are in the room if ...
... there are 100 eyes in the room 50
... there are 90 fingers in the room
... there are 400 limbs (legs \& arms) in the room 100

Punchline:
If there are n items (eyes, fingers, limbs)
and c items per every item-of-interest (people)
then there are n / c items of interest

Ordering: when does it matter?

Order matters:

How many ways can a student take 3 CS courses from 10 unique courses?

$$
(\operatorname{cs~} 1800,052000,052500)
$$

$$
\begin{gathered}
\neq \\
(052500,052000, \operatorname{cs} 1800)
\end{gathered}
$$

t toper

Order doesn't matter:

How many ways can one take 3 candies from 10 unique candies?
\{cuoc, Locket, Gummy\} ~

$$
\begin{aligned}
& \{\text { colly, gunny, choc }\} \\
& t_{\text {SET }}
\end{aligned}
$$

Combination: (intro example)
How many ways can one choose 2 candies from 3 unique candies?
$C=\{1,2,3\}$
(order doesn't matter)
3 ways:

$$
\{1,2\} \quad\{1,3\} \quad\{2,3\}
$$

How many ways can one choose 2 candies from 3 unique candies? $C=\{1,2,3\}$ (order doesn't matter)

ThERE ARE $P(3 J)=\frac{3!}{1!}=6$ wars of cacosinco Two ordered candies:

$$
\begin{array}{lll}
(1,2) & (1,3) & (2,3 \\
(2,1) & (3,1) & (3,0)
\end{array}
$$

How many ways can one choose 2 candies from 3 unique candies? $C=\{1,2,3\}$ (order doesn't matter)

There ARE $P(3)=,\frac{3!}{1!}=6$ ways of cuoosinco
Two ordered candies:

Combination: definition \& formula

- A combination is a subset of objects (order doesn't matter) (how many ways can I choose k items from n possible)
- A permutation is an ordering of objects (order matters) (how many ways can I order k items from n possible)

$$
c(n, k)=\binom{n}{k}=\frac{P(n, k)}{k!}=\frac{n!}{(n-k)!k!}
$$

$\binom{n}{k}$ AKA Binomial coefficient

$$
\frac{A}{\partial G} \underset{\partial G}{ } \underset{\partial G}{F} \quad \partial G^{3}
$$

How many ways can the 8 Mario Kart racers form the final podium of 3 winners. The order of
(i) Toad
(2) YosM1
(3) DK

Permutation

$$
\begin{aligned}
P(8,3)=\frac{8!}{(8-3)!} & =8 \cdot 7 \cdot 6 \\
& =336
\end{aligned}
$$

How many ways can the teams (mercedes, ferrari, etc) arrange on the podium of 3 winners in a formula 1 race? (assume that each team has at least 3 cars in the race). assume 10 teams example ordering: (ferrari wins 1st place, ferrari wins ind place, mercedes wins 3rd place) notice we ignore drivers, we're just ordering the teams

$$
\frac{10}{13 T} \quad \frac{10}{2 N D} \frac{10}{3 R D} \quad 10^{3}=1000
$$

How many unique 5 card hands exist in a deck of 52 unique cards? ("hands" are unordered)
order Doesnit Matter
No repeats

$$
\begin{aligned}
\binom{52}{5} & =\frac{52!}{5!(50-5)!} \\
& =2 \cdot 6 \text { MILLION }
\end{aligned}
$$

How many ways can one select the "remaining" 47 cards after selecting a 5 card hand (as in the problem above)?

$$
\binom{5 a}{47}=\frac{5 a!}{47!(52-47)!}
$$

Combinations: Leftover principle

How many ways can I choose all but 10 student to take out for ice cream from this class of size n ?

$$
\binom{250}{10}=\binom{250}{240}
$$

How many ways can I choose $n-10$ students to take out for ice cream from this class of size n ?

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Counting: Putting it together (almost ... see later slide for complete version of this table)
How to select k sirens from N

Counting Partitions of identical objects: (AKA Balls in bins or Stars \& bars):
How many different ways can two people split k slices of pizza?

Counting Partitions of identical objects: (AKA Balls in bins or Stars \& bars):
How many different ways can people split K slices of pizza?
Three

Peghonl

Nook w Hocoen

$$
\binom{k+2}{2}
$$

Ways

Counting Partitions of identical objects: (AKA Balls in bins or Stars \& bars):
How many different ways can eye split k sur ere?
N groups stars
$\underset{\text { Group }}{*} \underset{\text { Group a }}{*} \underset{\text { Gnoor } 3}{*} * \underset{\text { Group }}{*} \underset{\sim}{*}$

NEED N-1 BOUNDARIES For N GROUPS

Counting Partitions of identical objects: (AKA Balls in bins or Stars \& bars):
How many different ways can
N Bins BALSS

BIN 1

BiN 2
Bin 3
Bin 4

Something is still missing in our chart
How to select K items from N

How is the balls-in-bins fit into bottom right box of "putting it together"?
Selecting items from N items

- repeat selections allowed
- order of selections doesn't matter

Equinicantay

personal

Pr

penoula

How to select k sirens from N

Two conventions for STARS AND BARS
in CLASS Now:
K rems
N Groups 3

$$
\binom{K+N-1}{N-1}
$$

CONSISTENT IN SUMMARY

More commons.
K groups B
N rems

$$
\binom{N+K-1}{K-1}
$$

While we're making counting review materials:

Counting Fundamentals:

- Sum Rule: If two sets, A and B, don't share any common items

$$
|A \cup B|=|A|+|B|
$$

- Product Rule: How many tuples can be made pulling first item from A and next from B ?

$$
|A \times B|=|A| \times(B)
$$

Counting moves:

- Count-by-partition: Partition items we want to count into subsets which are more easily counted
- Count-by-complement: Count items not-of-interest, subtract it from "everything"

$$
|U-N|=|U|-|N|
$$

- Count-by-simplification: Be on the lookout for simpler, equivilent problems

Counting advice:

1. Clearly document your thinking on the paper (you'll clarify your thinking and find errors)
2. If you're stuck:

- head back to the materials of the past few slides
- try solving a simpler "sub-problem", the experience may provide fresh insight
- (often useful for count-by-partition)

In Class Activity
AETODY
How many passwords of length 5 can be made from vowels (upper and lowercase)?

$$
12^{5} \quad 10^{5}
$$

How many ways can I select 10 students in this room to give a million extra credit points to?

$$
\binom{250}{10}=\frac{250!}{240!10!}=
$$

10 countries each have one woman swimming in the women's 200 m freestyle. How many ways might the podium's nationality be arranged?
(egg. in tokyo 2020 it was Australia, Hong Kong (China) \& Canada)

How many ways can we order 14 pizza for our TeAs from a pizza place which serves 3 types of pizza
$000 \mid 00000000000000000000000000$

$$
\binom{14+2}{2}=\binom{16}{14}
$$

I've got 3 pairs of pants, 2 shirts and 5 hats. How many outfits (pants, shirt \& hat) can I wear if I won't wear one pair of pants with either 1 shirt or 1 hat?
(i.e. I can't wear pants A with shirt B and also I can't wear pants A with hat C)

I've got 3 pairs of pants, 2 shirts and 5 hats. How many outfits (pants, shirt \& hat) can I wear (ie. I cant wear pants A with shirt B and also I cant wear pants A with hat C)

$$
\begin{gathered}
3 \cdot 2 \cdot 5-1 \cdot 1 \cdot 5-1 \cdot 2 \cdot 1+1 \\
30-5-2+1 \\
24
\end{gathered}
$$

How many ways can we order 14 pizza for our TAs from a pizza place which serves 3 types of pizza (cheese, pepperoni, veggie)? Assume a whole pizza may only be of one type.
$(++)$ redo the pizza problem, relaxing our assumption that the whole pizza may only be of one type. Instead, assume each half of the pizza may only be of one type.
 might the podium's nation atty be arranged?
(e.g. in tokyo 2020 it was Australia, Hong Kong (China) \& Canada)
$(++)$ redo the swimming problem, but assume that 5 countries each have 2 swimmers each No Nation Repeated

$$
p(5,3)
$$

$$
\begin{aligned}
& \text { ares } \left\lvert\, \begin{array}{cc}
\text { Nation } & \text { Repeated } \\
111 & 0 \\
\vdots 0 & 5.4 \\
-1 & 5.4 \\
\hline 0.4
\end{array}\right. \\
& P(5,3)+5.4 .3
\end{aligned}
$$

might the podium's ndiona worm swimming in the women's 200 m freestyle. How many ways
(egg. in tokyo 2020 it was Australia Hanged?
$(++)$ redo the swimming problem, but assume that 5 countries each have 2 swimmers each No Nation Repeated

$$
P(5,3)
$$

(same as previous slide, but this is easier way of counting)

