CS1800
N\|Y-Tves.
Admin

- exam\#2! Fri 9am-lepm Zhar uinclar
- Hw7 ave Fir 1117 (78\% vdume)
- this weec's recitation- exam prep

Agendu

1. Growth of Functions
2. Complexity classes
3. Assigning u compluxity class
4. Growth of Functions

Last week... we proved that $3^{n} \leq n$!

- for $n>6$ this was the
3^{n} gros more slowly than n!
- not focused an a specific value of n
- as n gros arbitrarily large, $n!$ gets bigger faster
 (fake (hat)

Context: real ware

$$
\begin{array}{ll}
f(n)=3^{n} & g(n)=n! \\
n=\text { input } & n=\text { input } \\
3^{n}=\text { output } & n!=\text { output }
\end{array}
$$

$n=$ size of $2 n$ input
\#elemenk in set, graph, true, listlanag...
$f(n), g(n)=\#$ steps an zeganithm needs to Sole a problem
$f(n)$ grows mare sally than $g(n) \quad f(n) \leq g(n)$

- us size of input grass artaitranily large, $f(n)$ reds fewer steps than $g(n)$
- $f(n)$ is better (if zee other things are equal)
(ex)

$\frac{1}{1}$	$\frac{f(n)=n^{2}}{100}$		$g(n)=2 n$
10	10,000	gur	200
100	$1,000,000$	gus	2,000
1,000			
\vdots			
$1,000,000$	$1,000,000,000,000$		$2,000,000$

$g(n)$ grows mare slangy tron $f(n)$
Why this matter so mock in CS

- $f(n)$ \# steps an vigo needs on input ot size
- n size of input
- Choosing a slaver-graving zelgonthom has mare impact tran pros. (anguage, processor, memay space
n growing erboitranicy targe...
(ex) google sean - \# web sites
10 years ago: 600 m
now: 1.14 billion
(ex) tweets perday
10 yeas 2gd: 2.5 m
last yer: 500 m
(ex) \# instar user:
10 years rio: 15 m
now: $>$ I billion
(ex) Self-dniving cor
tabes pics constantly
~ 4 Terabytes per dry ($1 \pi=1,000$ GB 5)
huge "real liter implications to $f(n)$ gross
slaver or faster tran $g(n)$

2. Complexity Classes

If you there 100 zeguritans, then you'd have 100 different $f(n)=\underset{3_{n+2}}{3_{n}}$
$3 n+3$
$3 n+4$

$$
4 n+1
$$

we want to put ru-times in budats

- for a given algorithm, it has runtime $f(n)$
\rightarrow busizaly the same!
- put it into nearest Complexity class

Basic complexity doses

$$
\begin{aligned}
& g(n)=k \quad(k \text { is constant }) \\
& g(n)=\lg n \\
& g(n)=n \quad \text { good " } \\
& g(n)=n \cdot \lg n \\
& g(n)=n^{k} \quad(k \text { is constant) } \\
& g-\quad-\quad-\quad-\quad-\quad-\quad \text { is constant) } \\
& g(n)=k^{n} \quad \\
& g(n)=n!\quad \text { ind "n } \\
& g(n)
\end{aligned}
$$

constant time $O(1)$
log time $O(\lg n)$
liner time $O(n)$
Sorting time $O(n \lg n)$
polyneminal time $O\left(n^{k}\right)$
experentize time $O\left(k^{n}\right)$ factorize time $\theta(n!)$
millenium prize $\quad P$ us NP

- Poublems fer whican the any knan Soution is intructrble
- $\left.\begin{array}{l}\text { Come up w/faster solution } \\ \text { - oc, prove it can't be done }\end{array}\right\} \$ 1 m$

3. Assigning a Complexity Cuss
$f(n)=甘$ steps an zeyo needs an chat of size n which of the 7 Classes do ye being to?
ls upper band big-on

How to put a function in a complexity class:
easy way "'

$$
f(n)=3 n+2
$$

- drap coefticicints
- arp laver-coder terms

$$
\begin{aligned}
f(n) & =y_{n}+\not z \\
& =o(n) \\
f(n) & =z_{n}+\not z
\end{aligned}
$$

formal way
Defn of big-on
$f(n)$ is $0(g(n))$ if \exists positive $1, k$ such tract $f(n) \leqslant c \cdot g(n)$ for $\forall n \geq k$

To formally show $f(n)=O(g(n))$ nad to find c, k

$$
\left.\begin{array}{rl}
& =O(n) \\
f(n) & =1025 n+18 \\
& =O(n) \\
f(n) & =3 n^{2}+16 p+19 n \\
& =\theta\left(n^{2}\right) \\
f(n) & \left.=\not 2+\not 2 n^{2}\right\} \text { exsyuxy } \\
& =O\left(n^{2}\right)
\end{array}\right\}
$$

\longrightarrow terrane way What to shew:

$$
\begin{gathered}
2+2 n^{2} \leq c \cdot n^{2} \quad \forall n \geq k \\
f(n) \\
g(n)
\end{gathered}
$$

the way to find $1, k \ldots$ try cirdidztes
possible c

Try: $c=3, k=2 \quad f(n)=2 n^{2}+2 \quad g(n)=n^{2}$
went: $f(n) \leq c \cdot g(n) \forall n \geq k^{2}$
$2 n^{2}+2 \leq 3 \cdot n^{2} \quad \forall n \geq 2$

$$
\begin{array}{cc}
n=2 \quad 2 \cdot 4+2=10 \quad 3 \cdot 4=12 \\
& f(n) \leq c \cdot g(n)
\end{array}
$$

$$
\begin{aligned}
2+2 n^{2} & \leq n+2 n^{2} \\
& \leq n^{2}+2 n^{2} \\
& =3 n^{2} \quad \longrightarrow 2+2 n^{2} \leq 3 \cdot n^{2}
\end{aligned}
$$

ance.

