$C S 1800$

$$
10127-F_{n}{ }^{\prime \prime}
$$

Admin

- Hews at, are 11/3 11:59 pm
- next week: recitation 7

Agenda

1. Binomial Distr. K completing the picture
2. Poisson Distr. \sum of problexperiments
3. Probability Problems

$$
\begin{aligned}
& \operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(E \cap F)}{\operatorname{Pr}(F)} \\
& \text { Condisinal } \operatorname{Pr}(E \mid F)=\operatorname{Pr} \frac{(F \mid E) \cdot \operatorname{Pr}(E)}{\operatorname{Pr}(F)} \\
& \text { (Bays } \\
& \text { Q } E[X]=\sum_{E V} X_{i} \cdot \operatorname{Pr}\left(S_{i}\right) \quad \operatorname{Pr}(F)=\operatorname{Pr}(F \mid E) \cdot \operatorname{Pr}(E)+\operatorname{Pr}(F \mid 7 E) \cdot \operatorname{Pr}(\operatorname{PE}) \\
& V[x]=\sum\left(x_{i}-\mu\right)^{2} \cdot \operatorname{Pr}\left(s_{i}\right) \\
& X=\text { randan var } \\
& \text { Variance } \\
& u=\text { e.v. (mon) }
\end{aligned}
$$

1. Binomial Distr.
$\rightarrow X=$ random variable
$E[x] \sim$ on arg u wat happens
$\operatorname{Var}[x]$ - haw far from morn? Bic

Distr ~ model the outcomes Haw often will my out come happen?

Binomial \rightarrow every chance is independent of others zee experiments trave same inane of success

Experiment tao two possiou atcames

- success $\}$ even if actual experiment hos - failure many outcomes
(ex) Flip a coin
(ex) Rolling a die
Success $=$ heads
Success: even \#
failure $=$ tails
failure: odd \#

Bernoulli Trial

- perform experiment $w /$ two possible outcomes (s / f)
- success $=$ probability P
- failure $=$ probability $1-p$
p is fixed, outcome of ane trial does not impact outcome of another

Binomize Destr...

- Conduct n Bernoulli trizes
- $X=$ rendan vavizble associated with number of successfil trizes
wrat's the probability trat $x=k$?
(ex) flip a coin
success = heads

$$
p=.5
$$

$$
\text { failure }=\text { tails } \quad 1-p=.5
$$

n trizes

$$
n=7
$$

$\operatorname{Po}(x=k) \quad k \#$ successes $\quad k=4$
Wrat this looks lile?
S/F S/F S/F S/F S/F S/F S/F
total possible artcomes:

$$
2^{n}=2^{7}
$$

What outcomes trae $X=k$?
Y successes ...

$$
\begin{aligned}
& \text {. SSSSFFF } \sim \\
& \text { - SFFSSSF }
\end{aligned}
$$

How many hre $x=k$?

$$
\binom{7}{4} \quad \begin{aligned}
& 7 \text { spots } \\
& 4 \\
& \text { succ, }
\end{aligned}
$$

4 Suce, 3 faimure

$$
\text { (we }\left\{\begin{array}{l}
\text { SSSSFFF } \\
p \cdot \rho \cdot p \cdot p \cdot(1-p)(1-p)(1-p) \\
S F F S S S F \\
p(1-p)(1-p) P P P(1-p)
\end{array}\right.
$$

What's probe of ane $X=k$ atcome

$$
p^{4} \cdot(1-p)^{3}=p^{k} \cdot\left((-p)^{n-k}\right.
$$

All together...

Binomial Formula

$$
\operatorname{Pr}(X=k)=\binom{n}{k} \cdot\left(p^{k}\right) \cdot(1-p)^{n-k}
$$

(ex) Spin a roulette chat

- numbered 1-38

- $\omega_{\text {in }}=\$ 10$
- lose $=-\$ 1$
- Bet an: red 18/38

$$
\begin{aligned}
& X=\$ \\
& E[x]=10 \cdot 10 / 38+-1.20 / 38 \\
&=\$ 4.21 \\
& \begin{aligned}
V[x] & =(10-4.21)^{2} \cdot 18 / 38+(-1-4.21)^{2} \cdot 20 / 38 \\
& =21.303 \mathrm{~T} \\
& =30.17
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& X=\# \text { reds } \quad \text { spin } 5 \text { times } \quad n=5 \quad p=18 / 38 \\
& \text { Pr }(x \geq 4) ? \quad k=5 \quad 1_{p}=20 / 38 \\
& \operatorname{Pr}(X=5)=\binom{\downarrow}{5} \cdot\binom{18}{38}^{5} \cdot(20 / 38)^{0}=.02 \\
& \operatorname{Pr}(x=4)=\binom{5}{4} \cdot(18 / 38)^{4} \cdot(20 / 38)^{1}=132 \\
& \operatorname{Pr}(x \geq 4)=(.02)+(.132)=.152
\end{aligned}
$$

2. Poisson Distr O

Random Variable $X=\#$ of occurrences
$\left.\begin{array}{c}\text { - avg rate of occurrences } \\ \text { - regular time intervals }\end{array}\right\} \begin{gathered}\text { \# things } 1 \text { day } \\ \text { on arg }\end{gathered}$

- regular time intervals on arg
- arg rate
- indra time intervals - Sometimes less, sometimes mere
- e will in formula (base of en, ~2.71)
(ex) $X=\# p p l$ at Shillman Muntin in an hor \rightarrow who week in
- hour intervals
- on zug, 60 people watt in $\lambda=60$
- $\operatorname{Pr}(X=5)$ pr 5 pol walk in $k=5$ ares in hor

Poisson Formula

$$
\hat{B}
$$

$$
\operatorname{Pr}(x=k)=\left\{\frac{e^{-\lambda} \cdot \lambda^{k}}{k!}\right\}
$$

$$
\operatorname{nc}(x=5)=\frac{e^{-60} \cdot 60^{5}}{5!}=5.67 \times 10^{-20}
$$

$$
\begin{aligned}
& \\
&(x=70)=\frac{e^{-60} \cdot 60^{70}}{70!}=.021 \quad \text { Qrobability in } \\
& \text { a given har of } \\
&
\end{aligned}
$$ buing off from aug

$$
\underset{\text { 2chrezry }}{\operatorname{Pr}(x=60)}=\frac{e^{-60} \cdot 60^{60}}{60!}=.051
$$

(or actual ary)

$$
\begin{aligned}
& \operatorname{Pr}(x=500)=\frac{e^{-60} \cdot 60^{500}}{500!}=g 00 g l e \operatorname{can}^{\prime} t \quad!\quad n \\
& \operatorname{rr}(x=100)=\frac{e^{-60} \cdot 60^{100}}{100!}=6.12 \times 10^{-7}
\end{aligned}
$$

$$
k
$$

3. Probability Examples

- Halloween candy
- Lo choc cones

Draw 3 candies Pr (no chocolate)?

- 18 frit cores

order matier

$$
\frac{18}{28} \cdot \frac{17}{\underline{27}} \cdot \frac{16}{\underline{26}}=.249 \stackrel{11}{י}
$$

coder areosn't matter

$$
P_{r}(\text { at lest con })=1-.249
$$

$$
\begin{aligned}
& |S|=\binom{28}{3} \text { we } \\
& |E|=\binom{8}{3} \text { nocho } \because \\
& \operatorname{Pc}(E)=\frac{\binom{18}{3}}{\binom{8}{3}} \approx .249 \\
& \operatorname{Pr}(\text { at least are }(h o c)=1-.249
\end{aligned}
$$

