CS 1800: day16

Admin:

- HW5 due Friday
- HW6 released Friday

Content:

- graph definitions \& anatomy
- graph representation
- list of lists
- adjacency matrix
- graph equivilence (isomorphism)

Whats a graph?

A set of nodes (vertex) and a set of edges (and edge is a pair of nodes)

More commonly, folks use the word "graph" to mean figure (as below). This is a different kind of graph. Many tech types use the word "figure" to describe these, no universal convention

A DIFFERENT KIND of GRAPH

Graph: Whats it good for?

Graphs are wonderful for representing things. Often, representing clearly is a big help!

Example: represent a maze as a graph.

> Node $=$ intersection in maze
> \quad (start / end / dead-end too)

Edge $=$ possible movement between intersections

Graph: Whats it good for?

Graphs are wonderful for representing things. Often, representing clearly is a big help!

International Morse Code

1. The length of a dot is one unit.
2. A dash is three units.
3. The space between parts of the same letter is one unit. 4. The space between letters is three units.

Graph: Whats it good for?

Graphs are wonderful for representing things. Often, representing clearly is a big help!

Phylogeny based on nucleotide differences in the gene for cytochrome c

https://cdn.britannica.com/03/403-050-F1B9349F/Phylogeny-differences-cytochrome-c-protein-sequence-organisms.jpg

Graph: Whats it good for?

Graphs are wonderful for representing things. Often, representing clearly is a big help!

Gradin represented BY
A set of nodes (also known as: vertex / vertices) V, E to Left:

$$
V=\{A, B, C, D, E\}
$$

A set of edges (each edge is a pair of nodes)

$$
\begin{aligned}
E= & \left\{\begin{array}{l}
\{A, B\},\{D, C\} \\
\\
\\
\{C, O\},\{D, C\}\{C, E\}\}
\end{array}\right.
\end{aligned}
$$

Grapols can be Drawn Diffently But irs still same graph

Warning:

There are a lot of terms referring to graph "stuff"
Most are super intuitive, but please double check definitions

Graph: Adjacency (undirected)

Two nodes are adjacent in a graph if there is an edge between them.

ADjacent:
A, B

Not Aojacenta A, C

A node and an edge are adjacent if the node is in the edge (remember, edge = pair of nodes)

Adjacent:
A, $\{A, B\}$

Not Adjacent
$C,\{A, B\}$

Two edges are adjacent if one node is adjacent to both

Adjacent:

$$
\{A, D\} \quad\{B, C\}
$$

Not Adjacent

$$
\{A, D\} \quad\{C, D\}
$$

A node's degree is the number of edges which are adjacent to it

In Class Activity:

Draw a graph where the sum of degrees of all nodes is odd (or argue why this isn't possible)

What is the relationship between the following values:

$$
\begin{gathered}
\operatorname{Deg}(A)+\operatorname{DCg}(B)+\operatorname{DEG}(C) \\
1+2+1=4
\end{gathered}
$$

- the sum of degrees for all nodes
- the number of edges in the graph

Stuck? Draw some little examples until you have your own eureka moment (really, its fun!)

2 EDGES

$$
1+2+1=4
$$

sum of D geonses

- A

0 anos
$O=\sum_{l} D E G$

6 enoes
$1 \partial=\sum D E C$
\sum DES OF ALL NDES $=2 \cdot \#$ EDOES

Adjacent Sequences on a Graph (walk / path / cycle):

Walk - a sequence of adjacent edges. (equivilently: a sequence of adjacent nodes)

$$
\begin{aligned}
& \{A, B\},\{B, C\},\{C, B\})=A B C B \\
& \text { a walk where each node is unique } \\
& A B C E .
\end{aligned}
$$

$$
A B C E
$$

Not A Path
Cycle - a path which/starts and ends at the same node (only this last node is not-unique)
Nor A cycle
$A B C D A$

Trees! (a super useful construction)
A graph is connected if there exists a path from every node to any other node
CONNECTED:

Gnarl NTH 4 Nooses

Reminder: A cycle is a path (sequence of unique, adjacent edges) which starts and ends at the same node

$$
C Y C L E=A B C A
$$

Tree - a connected graph without any cycles

Tree:

Not a tree (Has CyCLE)

Not A TREE:
Disconnected

In Class Activity

Identify a relationship between:

- the total edges in a tree
- the total nodes in a tree

Remember: a tree is connected and doesn't contain any cycles

CONNECTED
NO CYCLEES

N

7 NODES
 6 EDGES

- draw some little examples
- make a conjecture (a guess as to the relationship)
- argue with your conjecture
- if you believe it, explain why your conjecture is true

Tree CONNESTED

No cycres

in A TreE
\# NODES $-1=$ E EDOS

Rooted Tree - a tree (connected, acyclic graph) which has one special node identified as the root

Convention

Root of tree on top (Nor REccomended for carisrmas)
(useful fact about trees: there is a UNIQUE path between every pair of nodes)
Rooted Trees: Why go through the trouble?
Allows us to define family relationships:
parent of a node x : next node on path from x to root (root has no parent)
$e x$: D is the parent of B
children of node x : the set of all nodes which x is parent of ex: $\{B, E\}$ are children of D
a node is a leaf if it has no children:
ex: A, C and E are leafs
sibling of node x : the set of all nodes which whose parent is also the parent of x ancestor of x : all nodes on the path to root descendant of x : all nodes which have x as an ancestor

6 Roored TarE E

A subgraph is a graph whose nodes \& edges are contained with another graph

is SODGRAPAL of

Connected Component- a "largest" connected subgraph

EAcH cIRCLED SOBGRAPH IS A CONNECTED COMPONENT
tip: often thinking about a graph in terms of its connected components is fruitful for insights

Forest - any acyclic graph
Forest below has 14 nodes

Special Graphs:

"DAG": Directed Acyclic Graph

Weighted
Each edge has a weight

a simple graph has no such edge
ok, lets take a breather ... that was a lot of new language ...
good news:

- only one more new graph vocab word today
- you needn't memorize anything, just take a peek back
not-so-good-news:
- graph language tends can have little inconsistencies per author (e.g. is a node its own ancestor?)

Two nodes are neighbors if they are adjacent (there is an edge between them) (note: definition assumes an undirected graph ... edges have no direction)

A, B are nevations
$A_{1} C$ are not nembors

Graph Representation (on a computer): List Representation
Goal: represent all nodes \& edges of a graph
Approach: For each node, store a list of all neighbors (convention: alphabetize)

- E

Neicteons $-A=[B, O] \Rightarrow C$ is Nainabr
N Cora cons- $B=[A, C]$
Neiontions $C=[B, 0] \rightarrow B$ is Neater
Neiontons $-D=[A, C]$ of C
Neloutors-C $=[]$

Graph Representation (on a computer): Matrix Representation
Goal: represent all nodes \& edges of a graph
Approach: Build $|\mathrm{V}| \times|\mathrm{V}|$ matrix (one row \& col per node):

- 0 in row i and column j means node i and node j don't have edge between them
- 1 in row i and column j means node i and node j have edge between them

convention: alphabetize
convention: a node is not its own neighbor

Graph Representation (on a computer): Matrix Representation
Goal: represent all nodes \& edges of a graph
Approach: Build $|\mathrm{V}| \times|\mathrm{V}|$ matrix (one row \& col per node):

- 0 in row i and column j means node i and node j don't have edge between them
- 1 in row i and column j means node i and node j have edge between them

convention: alphabetize
convention: a node is not its own neighbor

In Class Activity:
Given the one representation of the graph, give its representation as the other two forms.

Forms of representing a graph:

- picture (as is most common in the notes)
- list representation on computer
- matrix representation on computer

$$
\begin{aligned}
& N \text { ennarars_A }=[0] \\
& N=10+1800 \text { S }-B=[A] \\
& \text { Neicmicors - } C=[\}
\end{aligned}
$$

$$
\begin{array}{llll}
& A & B & C \\
A & 0 & 1 & 0 \\
B & 1 & 0 & 0 \\
C & 0 & 0 & 0
\end{array}
$$

$A B C D E$
A 00001
B 00110
C 01010
D 01100
E 10000

Convention
No Node is is

$$
\begin{array}{ll}
A=[E] & D=[B C] \\
B=[C D] & E=[A] \\
C=[B D] &
\end{array}
$$

Graph isomorphism
high level: two graphs are isomorphic if they have same shape

intuition: two graphs are isomorphic when we can "rename" the nodes of one to get another

Node Renaming

$$
\begin{aligned}
& A=1 \\
& B=0 \\
& C=3 \\
& D=4
\end{aligned}
$$

α
"rename": one-to-one correspondance (i.e. bijection)

