CS 1800
1117 - tres.
Admin
-H26 ave En 11:59pm

- Ha at Fr
- this week: normal recitation
- next week: exam renew exam \#2 $11 / 17$ in recitation

Agenda

1. Induction Reasoning
2. Proof structure
3. Example
(4. TA Survey)
4. Induction Reasoning

We live where... the anil currency is

$$
\$ 2 \quad 15
$$

we want to compile ry amount of marcy (nov dobras)
then oo we use this proof?

- we cold pare ot things are at anime
- if we had so time and patience
- technigar to short wot doing one at a time
(by) showing we cen gat from k. to $k+1$
(k ya \#2) Shaving we in get smallest valve we cue about
money universe
- Gore: Show we can limply zornost ament of $\mathbb{\$}$

Starting point: $P(n)$ stakes that we can make $\$_{n}$

$$
\begin{aligned}
l_{\$} & \text { with } 2 \cdot t+5 \cdot f \\
& i_{s_{\# 2}} \\
& c_{y} \neq 5 \mathrm{~s}
\end{aligned}
$$

$P(n) \cdots n=2 t+5 f$ with $t, f \in \mathbb{N}$

Predicate. general ization of logic statement has no fath valve (an't revel prove $P(n)$
Turn predicate into logic statement

1. Plug in valves for $n \quad P(15)=2.0+5.3$

$$
\begin{aligned}
& P(16)=2 \cdot 3+5.2 \\
& P(17)=2 \cdot 1+5 \cdot 3
\end{aligned}
$$

(ky 12
2. Quantifiers $\forall n \in Z \quad n \geq 4 \Rightarrow P(n)$ ky $\# 1$

Money Proof (iss) goal $\forall n \in Z n \geq 4 \Rightarrow P(n)$

Base lase: ploy in smallest n we cue about

$$
\begin{aligned}
P(4) & =2.2+5 \cdot 0 \\
& =4
\end{aligned}
$$

Inductive Step: $P(k) \Rightarrow P(k+1)$

- If I in make $\$ k$, turn I in male $\$ k+1$
- Assume $P(k) \sim$ den't need to prove it
- prove $P(k) \Rightarrow P(k+c)$
$\$ k$, then subtract $t-2$ and zed $f+1$ (2se 1
Assume $P(x)$

$$
\begin{aligned}
k & =2 t+5 f \quad \text { with } f=0 \\
& =2 t
\end{aligned}
$$

Goal: show we cir male \$ $k+1$

$$
\begin{aligned}
& k+1=2 t+1 \\
&=2 t+(5-4) \\
&=2 t-4+5 \\
&=2 \cdot(t-2)+5 \cdot 1 \\
& \frac{k 2}{2} \quad+55
\end{aligned}
$$

\$k, then subtract $f-1$ and add $t+3$ (r se 2 (3tlezot are 5)
Assume $P(x)=2 t+5 f$

$$
\begin{aligned}
k+1 & =2 t+5 f+1 \\
& =2 t+5 f+(6-5) \\
& =2 t+6+5 f-5 \\
& =\frac{2(t+3)}{42}+\frac{5(f-1)}{4} \quad \text { dare! }
\end{aligned}
$$

2. Structure of this proof

Predicate - Logic statement (know what yare praing)
Base (use

- $P(w)$
\rightarrow Smallest calve we core about
- mini prot (ex: $4=2.2$)
- very straight forward
- Shaving it woks fer smallest valve

Inductive Step
Prove twat $P(k) \Rightarrow P(c+1)$
Assume $P(L)$, den't prove it
Tractive Hypo thesis vocal word!

Use $P(k)$ to shaw $P(k+1)$

- Zr lith zeyebra usually
- baby steps!
- keep both sides of equality true

What can we prove with induction?

- Anytime ya cold prove $P(1), P(2), \ldots$ through ∞
- it's a shortcut!
- usuzely Shaving $P(n)$ for $n \in Z_{1}^{+} n \in \mathbb{N}$, sur subset
- Inequalities
- Number theory (derision, primes)
- valve of summation \sum mum $=$ Shortcut

$$
\underbrace{\sum_{i=1}^{n} i=1+2+3+\ldots+n}_{\text {let }}=\underbrace{\text { shat cot }}_{\text {form ala }}
$$

- structural proots (graphs, trees, sets)
- program correct ness \rightarrow in real life!.
any proof: $\begin{aligned} & \text { Convince the reader Baby steps "̈ } \\ & \text { twat it's twee. }\end{aligned}$

3. Induction Example

- Inequality

$$
\begin{array}{ll}
P(n) \quad & S_{n}+5 \leq n^{2} \\
& P(1)=\text { False } \\
P(4)=\text { False } \\
P(r)=\text { False } & P(S)=\text { False } \\
P(s)=\text { False } & P(6)=\text { True! }
\end{array}
$$

$\forall n \in Z \quad n \geq 6 \quad P(n) \sim$ logic statement we can pave!

Base case ~ show $P(n)$ for Smallest n we care about

$$
\begin{aligned}
P(n) \ldots P(6) \quad . \quad 5 \cdot 6^{n}+5 & \leq \hat{6}^{2} ? \\
35 & \leq 36
\end{aligned}
$$

Inductive Step ~ show $P(k) \Rightarrow P(k+1)$

$$
\begin{aligned}
& \text { Assume } P(k) \\
& 5(k+1)+5=\frac{5 k+5+5}{P(k)} \\
& \leq k^{2}+5 \\
& \begin{aligned}
& 5 k+5 \text { Index Ayethois } \\
& k_{\begin{array}{c}
\text { ooze: use } p(k) \\
\text { to show } p(k+1) \\
5(k+1)+5 \leq(k+1)^{2} \\
\text { iris }
\end{array}}
\end{aligned}
\end{aligned}
$$

$\leq k^{2}+k \quad \rightarrow$ things we know to be tree!

$$
\begin{aligned}
& \leq k^{2}+2 k+1 \\
& =(k+1)^{2} \quad \ddot{\prime} \text { dene!. }
\end{aligned}
$$

Prot Felix's survey "i thant ω^{\prime}.

