CS1800

Admin:

- hw7 due Friday
- exam2 due Friday
- recitation this week:
- no quiz
- focus on exam2 practice problems (available on website)

Content:

- Series \& Sequences (Arithmetic, Geometric \& Quadratic)
- Given a series, identify its type (may be none of the 3 above)
- Express the i-th term in a sequence
- Compute the partial sum of a series (Arithmetic \& Geometric)

Summation Notation: a quick reminder

$$
\begin{aligned}
& 1+2^{k}=+1+\partial^{\prime}+\left(1+\partial^{\circ}\right)=+5=35 \\
& +\left(+2^{3}\right)+9 \\
& +1+2^{4}+17 \\
& \text { Notice: } k \text { is wate } \\
& \text { Nomeen wrict } \\
& \text { stees or } 1
\end{aligned}
$$

Sequences \& Series (definition):
A sequence is an ordered list of objects (always numbers in this CS1800 unit)

$$
1,2,3,4,5,6, \ldots
$$

A series is the sum of an infinite sequence of objects

$$
1+2+3+4+5+6+\ldots=\sum_{k=1}^{\infty} k
$$

A partial sum (of a series) is the sum of part of a series

$$
1+2+3+4=\sum_{k=1}^{4} k=10
$$

Arithmetic Sequence / Series: What it is (and how to identify it)

An arithmetic sequence's first difference (next term - current term) is constant:

To test if a sequence is arithmetic, compute first difference. If its constant then sequence is arithmetic.

Arithmetic Series / Partial Sum: What do they look like in summation notation?
Example:

Every arithmetic series can be expressed via the following form:
estimating value

- Difference between aDJACENT VALWES

Geometric Sequences / Series: What it is (and how to identify it)

An Geometric sequence is one whose first ratio (next term / current term) is constant:

To test if a sequence is geometric, compete first raf io. If its constant then sequence is geometric.

Geometric Series / Partial Sum: What do they look like in summation notation?
Example:

$$
1 / \partial+1+2+4+8+\ldots=\sum_{k=0}^{\infty} 1 / 2 \cdot \partial^{k}
$$

Every geometric series can be expressed via the following form:

Quadratic Series / Partial Sum: What is it? (i.e. what does it look like in sum notation?)
Every quadratic series can be expressed as:

$$
\sum_{k=0}^{\infty} a k^{2}+b k+\underset{A}{c}
$$

C, b, C ARE CONSTANTS $\left(\begin{array}{cc}\text { nor a Easily } & \text { seen As } \\ \text { Araramenc } / \text { Geometric }\end{array}\right)$
First term
Example ($a=1, b=0, c=0$):

$$
\begin{array}{r}
1 \cdot 2^{2} \cdot 0 \cdot 2+9+16+25+\ldots \\
1 \cdot 0^{2}+0 \cdot 0+0+4^{1}+9+1 \cdot 5^{2} \cdot 0 \cdot 3+8 \\
1 \cdot 5^{2}+0 \cdot 5+0
\end{array}
$$

Question (for later): Given Qelffrtst few values in sequence, how can we get a, b, c?

Quadratic Sequences / Series: How to identify it
The second difference of a quadratic sequence is constant

In Class Activity: Identify the type (arithmetic, geometric, quadratic) of each of the following sequences. If sequence is arithmetic or geometric, express its corresponding series in sum notation.
i.

Quadratic Series: Given sequence, how to compute a, b, c in summation notation

$$
\begin{aligned}
& 6=a \cdot 0^{2}+b \cdot 0+c \Rightarrow c=6 \quad \Rightarrow 9=2+b \quad b=7 \\
& 15=a \cdot 1^{2}+b \cdot 1+c \Rightarrow 9=a+b \\
& 28=a \cdot \partial^{2}+b \cdot 2+c \Rightarrow 22=4 a+2 b \Rightarrow 11=2 a+b \\
& \Rightarrow 11=a+a+b \\
& \Rightarrow 11=a+9 \\
& \Rightarrow a=2
\end{aligned}
$$

Checking our work with python

(you needn't ever do the same for CS1800 ... but cute to see that you can using python)

```
matt@matt-yoga-nu: $ python3
Python 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> a, b, c = 2, 7, 6
>>> [a * k ** 2 + b * k + c for k in range(10)]
[6, 15, 28, 45, 66, 91, 120, 153, 190, 231] }\longrightarrow\mathrm{ SAms AS
                                    GVNEN
```

If you're interested in doing the same and don't have python on your computer, check out "google colab" which allows you to run python code in the cloud.

Find the coefficients (a, b, c) which allow us to express the following series in summation notation (liS Quadratic)

$$
\begin{aligned}
& \begin{aligned}
& 1+3+7+13+21+31+43+57+73+91+\ldots=\sum_{k=0}^{\infty} a k^{2}+b k+c \\
& 1=a \cdot 0^{2}+b \cdot 0+c \Rightarrow c=1 \\
& 3=a \cdot 1^{2}+b \cdot 1+c \Rightarrow 3=a+b+1 \Rightarrow 2=a+b+2=1+b \Rightarrow \\
& 7=a \cdot \partial^{2}+b \cdot 2+c \Rightarrow 7=4 a+2 b+1 \Rightarrow 6=4 a+2 b \\
& \Rightarrow 3=2 a+b=a+a+b \\
& \Rightarrow 3=a+2 \Rightarrow a=1
\end{aligned}
\end{aligned}
$$

Up next: computing partial sums (arithmetic \& geometric ... not quadratic)
Anthanetic

$$
0+1+2+3+4=\sum_{k=0}^{4} k=?
$$

\downarrow
No Simple Formica (i)

Geometric

Computing Arithmetic Partial Series: motivation via tall tale

Computing Arithmetic Sums: A more generalizable expression
Small Test Example

$$
1+2+3+4+5=15
$$

Average term \times Number of Terms

$$
\frac{1+5}{2}=3
$$

$$
5
$$

$$
\sum_{k=0}^{N} a_{0}+d k=\left(\frac{a_{0}+a_{N}}{2}\right) \times(N+1)
$$

Computing Geometric Series Partial Sums

Computing Geometric Series: Lets work a little example to check if that formula works

$$
\begin{aligned}
& v=0 \\
& 1+2+4+8+16=\sum_{1.24}^{k=4}=\sum_{k=0}^{4} \mid \cdot 2^{k}=31 \\
& 1.2^{\circ} \\
& \text { frost team } \\
& N=\text { lankest } \\
& \text { in som } \\
& S=\frac{a_{0}\left(1-r_{i}^{N+1}\right)}{1-r} \begin{array}{c}
r=\text { Ratio } \\
a_{1}
\end{array}=\frac{1 \cdot\left(1-\partial^{5}\right)}{1-2}=\frac{-31}{-1}=31
\end{aligned}
$$

In summary (Arithmetic, Geometric \& Quadratic Sequences / Series / Partial Sums)

Compute each of the following sums (using the partial sums formifiai lis TERM \# of

$$
\begin{aligned}
& \text { i. } \sum_{k=0}^{100} 4-1 k \quad \begin{array}{c}
\text { Anctumeric } \\
\left.\begin{array}{c}
\text { End Has foam: } \\
a+d k
\end{array}\right)
\end{array}\left(\frac{4+4-1.100}{2}\right) \cdot 101 \\
& \text { ii. } \sum_{k=0}^{i 0} 10 \cdot 3^{k} \quad \begin{array}{l}
\text { Gromernic } \\
\text { (form } \left.a \cdot r^{k}\right)
\end{array} \quad \frac{a_{0}\left(1-r^{N+1}\right)}{1-r}=\frac{10\left(1-3^{11}\right)}{1-3} \\
& K \circ \text {; } 3 \text { 4 } 56 \\
& \sum_{k=0}^{6} 10-3 d=\left(\frac{10+10-3 \cdot 6}{2}\right) \cdot 7 \\
& \text { Arithmetic }
\end{aligned}
$$

