CS1800 Day 9

Admin:

- exam1 is on Oct 17th
- hw3 due today, hw4 released today
- hw4 deadlines are funny (for exam):
- includes content from day10 (next class)
- solutions for hw4 released sunday oct 15 @ 12:01am, first thing in the morning
- good news: allows you study
- bad news: you may only use up to 1 late day on hw4
- (next tuesday we'll do a "practice" exam together on gradescope so you can see the format, its pretty much a timed HW assignment)

Content:

- review PIE \& product rule
- permutations
- count by partition
- count by complement
- count by simplification

Pie
A B

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Sumbue $|A \cup B|=|A|+|B|$

Proouct

$$
|A \times B|=|A| \times|B|
$$

$$
\begin{aligned}
& A=\left\{\begin{array}{ll}
1 & 0
\end{array}\right\} \\
& B=\{45\}
\end{aligned}
$$

How many ways can a salesman order 3 city visits?
(How many tuples can we make from items A, B, C without repeating?

Permutations: Travelling Salesperson
Atlanta
How many ways can a salesman order 3 city visits?
(How many tuples can we make from items A, B, C without repeating?)
CHicago

"8 Factorial"

$$
\left.8\right|_{0} ^{1}=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1
$$

CONVENTION $0!=1$

$$
11_{0}=1
$$

our Salesman (of Previous slide) had $3!=3 \cdot 2 \cdot 1$ total orderings of 3 cries

Permutations: A Travelling (lazy) Salesperson
How many ways can a salesman order 2 of 5 cities?
(How many tuples of length 2 can be made from A, B, C, D, E where no repeats allowed)?

The number of ways of ordering k objects, from n total available is:

$$
P(n, k)=\frac{n!}{(n-k)!} \frac{10 \cdot 9.8 \cdot 7.6 .5 \ldots}{7.6 .5}
$$

Examples:

Visit 3 of 3 cities

$$
P(3,3)=\frac{3!}{(3-3)!}=6
$$

visit a or 5 cities

$$
P(5, \partial)=\frac{5!}{(5-\partial)!}=\partial 0
$$

How many ways are there to order 6 of 20 people for a family portrait?
(If time): Plug a few of these factorials into calculator or google, how big of a factorial do you need to plug in until you "break" your computer?
$P(20,6)=$

$$
\frac{20!}{(20-6)!}=\frac{20!}{14!}=\frac{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15}{111111}
$$

$$
\begin{aligned}
& 10!\cong 3 \cdot 10^{6} \quad 2 \text { milu.on } \\
& 20!\cong 2 \cdot 10^{18}
\end{aligned}
$$

$19!\cong 10^{17}$ SEL Since Big Bang $50!\cong 10^{30}$ AToms in universe $701 \cong$ 亿 10 "0000 0 "

Convention (in this class):
Feel free to leave expression as

$$
P(5,3) \text { or } \frac{5!}{2!}
$$

Counting "moves":

- count by complement
- count by partition
- count by simplify

Count-by-complement
How many ways are there to order 5 people such that person A is not last?
$L=S E T$ of ORDERNGS WAERE A is Last
$U=A L L$ ondennncs of S people

$$
\begin{aligned}
|u-L| & =|0|-|4| \\
& =5!-4!
\end{aligned}
$$

$$
\begin{aligned}
& \text { COUNT-BY-SYMMETNY } \\
& 5!_{0} .4 / 5
\end{aligned}
$$

Count-by-complement
How many ways are there to order 5 people such that person A is not last?
General approach: If we can count everything (U) and all items we're not interested in (L) then we can subtract the two to count the items of interest.

How many passwords can be made of lowercase letters which are no longer than 5 characters?
5 char 4 cure 3 came 2 cuman 1 come

$$
\begin{aligned}
& 26^{5}+26^{4}+26^{3}+26^{3}+26^{1}+20^{\circ} \\
& A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}
\end{aligned}
$$

Intuition: partition of set A divides its items into groups so each item is in exactly one group

$$
A=\{1,2,3,4\}
$$

$$
\begin{aligned}
& A_{1}=\{2,3\} \\
& A_{2}=\left\{\begin{array}{l}
3 \\
A_{2}
\end{array}\right. \\
& A_{3}=\{4\}
\end{aligned}
$$

Definition: partition of set A is a set of sets A_1, A_2, ... such that

$$
i \neq j \rightarrow A_{i} \cap A_{j}=\varnothing
$$

Eau item of A is in
\qquad At most one A :
$A_{1} \cup A_{0} \cup A_{3} \ldots A_{N}=A$ \qquad At case one A :

Count-by-partition:

$$
\begin{aligned}
|A| & =\left|A_{1} \cup A_{3} \cup A_{3}\right| \\
& =\left|A_{1}\right|+\left|A_{0}\right|+\left|A_{3}\right|
\end{aligned}
$$

$A_{i} A_{j} A E E$ Dissoñ (ALL intersections Emmer)

Approach:
Count items by partitioning them into subsets
(common error: ensure that every item is in exactly one subset)

Count-by-simplification:
How many ways can we order 5 family members for a portrait if person 2 is a baby and must be on person l's immediate right?

invalid Portrait

Mea Culpa:
"Count-by-simplification" isn't really a particular approach like others ...
point is, be on the lookout for equivilent problems more easily counted

In Class Activity

How many passwords of length 10, made of lowercase characters, don't start with "qwerty"? (hint: complement)

How many ways are there to order 3 people in a wedding photo for romeo and juliet?
Assume:

- there are 10 Montague's (Romeo's family, excluding him) who could be in the photo
- there are 7 Capulets (Juliet's family, excluding her) who could be in the photo
- Romeo and Juliet are too busy dancing to be in any picture
- Montagues and Capulets won't get in the same photo (that whole Tybalt / Mercutio thing...)
(hint: partition, simplify a bit)
How many ways are there to order 5 of 7 people in a family portrait such that person 1 , if included, is not immediately to right of person 2?
(hint: partition, complement)

How many passwords of length 10, made of lowercase characters, don't start with "qwerty"? (hint: complement)

$$
\left.\begin{gathered}
\text { ALL Password } \\
26^{10} \mid
\end{gathered}\left|\begin{array}{c}
\text { Passwords sLant } \\
\text { Qwerty }
\end{array}\right| \begin{gathered}
26^{4}
\end{gathered} \right\rvert\,
$$

How many ways are there to order 3 people in a wedding photo for romeo and juliet? Assume:

- there are 10 Montague's (Romeo's family, excluding him) who could be in the photo
- there are 7 Capulets (Juliet's family, excluding her) who could be in the photo
- Romeo and Juliet are too busy dancing to be in any picture
- Montague and Caplets won't get in the same photo (that whole Tybalt / Mercutio thing...)
(hint: partition, simplify a bit)
order oof 10 M

$$
P(10,3)=\frac{10!}{(10.3)!}=10.9 .8
$$

order 3 of 7

$$
P(7,3)=\frac{7!}{(7-3)!}=7.6 .5
$$

How many ways are there to order 5 of 7 people in a family portrait such that person 1 , if included is not immediately to right of p
(hint: partition, complement)
Case 1 Person I not in Picture

$$
P(6,5)=\frac{6!}{(6-5)!}=6!
$$

person 1 in Picture in any way
$\begin{array}{ll}1 \ldots-. & P(6,4) \\ -1 & P(6.4)\end{array}$

- - -

Pensal 1 in Pictone immenarte rount of a

$$
\frac{4 \cdot P(5,3)}{\begin{array}{l}
21 \\
6!
\end{array}+5 \cdot P(6,3)-4 \cdot P(5,3)}
$$

A simpler way than what was shown in section 3 classtime (thank you thank you thank you :) !)

