CS1800 day 3

Admin:

- hwl released today (due the following friday, as nearly all HWs are)

- tutoring groups

- what to do if you can't access piazza (email Kayla and myself, we'll add you)

Content:

- Two's complement (system to represent negative binary numbers)
- Overflow

- Floating point (system to represent non-whole numbers) (if time)

Whats the difference between operating in base-b and operating in base-b on a computer?
Computers store all values with the same number of bits
why? quicker / easier

Assume: a computer is using a 3-bit representation of values. How does it compute & store the
following?

- om»(Cucse Tanet
C\l\} (oo \ Ors can BE

S<oRED
7 % = D
Tas S VedED

For today: assume we're working with values on a computer

- all values are N-digits
(you'll be given this info in problem statement)

- discard the most significant (left-most) digits if needed
(as shown in green on last slide)

Number Systems:

Currently we're missing:

- negative values (e.g. -43)
- non-whole values (e.q. 321*2358)
Number systems:

- Unsigned Integers: . (“\33

can represent whole, non-negative numbers
everything we've done so far are unsigned integers (we just didn't cover name until now)
e.g.(110) 2 =6

- Two's Complement: 7

can represent whole (potentialy negative) numbers \\ =
(will study today)

- Floating Point Values:

non whole-numbers
(will study today if time)

Number Systems:

Currently we're missing:
- negative values (e.g. -43)
- non-whole values (e.g. 321.12358)

Number systems:

- Unsigned Integers:
can represent whole, non-negative numbers
everything we've done so far are unsigned integers (we just didn't cover name until now)
e.g.(110) 2 =6

- Two's Complement:
can represent whole (potentialy negative) numbers
(will study today)

- Floating Point Values:
non whole-numbers
(will study today if time)

Sign bit*:

A not-so-great number system for negative values

) L
3 (g Ot BT

(@) o‘(c—\F)"-“"’a

Lp‘?‘;"'?r 3

RN

S B Prsecemy

No ONME ‘ O & oPEANTINS Y1ELD ™ conRELS

[(PIRRES S Seseas®

(osaYymo | (), * (Dm Co,

(\003 = -0 -y ¥ \ e O

Two's complement: A better way to store negative numbers

l Example: 3-bit two's complement

Tt's compumenT Casgiemy Secved

ONIOUE
CEQD

(<Doo>a =0

\

Léso S
),
...l &

—

Ooo_ o?éﬂ.k'“bk)s \4\&59

con R TS

= O

* Assumes that correct
result may be
represented (more later)

In Class Activity:

If possible, convert each of the following values to the given number system. If not possible, justify
why.

(Use guess-and-check as needed, a reliable decimal-to-2's-complement method coming shortly)
o \
0 unsigned 2 bit integer. —
-2 unsigned 3 bit integer"& @ ;‘ BaA VS enNeED
0 3 bit 2's complement
-4 3 bit 2's complement ._‘

-4 4 bit 2's complement —3—-1 :

5 4 bit 2's complement ; 1|0 O i -

10 4 bit 2's complement A & L(; o l
-3 4 bit 2's complement i L ‘\ -3 I

—

H20¥\ =)
(++) What does the 2's complement idea look like in a base which isn't 2?%oes it also have the
properties we love so much in binary (unique zero, addition operations still work)?

What values can we represent with N bits?

Unsigned Integers
o

NNV S 9

UL

& MmALLEST JALOE

O

L AQeEsT VALE

L\u\\\ \\\“3 *3 -\

Two's Complement
o

FQN‘\. o ° a‘ a

UL

SM ALLEST VALVE

Lloooooo) = -y

L, 5T J A‘-—oé’

(omy), = " -\

P o *¥B Y) +\]

/Ll 3 L}_

3)

\ b
Q\OD \ : Oov e [aeesT Qo voE,.(L

What values can we represent with N bits? (representability)

Unsigned Integers
o

M. 3 9

UL

& MALLEST VALVE

O

L AQeEsT VALE

3" -\

r

Two's Complement
o

~PleLr S 9

UL

SM ALLEST VALVE 6’\

..3“'\ -9 :‘35

We can represent all whole values from smallest to largest (including smallest & largest) = 3\

(we won't justify this)

O JIETCow)

Overflow: the outcome of an operation can't be represented in the given number system

example from earlier in lesson: é(‘)b 4 Cbo\ > = (2«00039

7 + 1 = 8 as 3 bit values D‘;c,mo

overflow since 8 can't be represented as a 3-bit value

Common misconception: A

There are times when we discard a bit but result is correct (no overflow occurs)

punchline: don't conflate discarding the bit with overflow

Decimal to N-bit two's complement: preliminary

"aﬂ."‘" 95 g‘b 3 3°

Lt i

1. Validate that value can be represented as N-bit two's complement (see "representability")

2. If value is positive, its the same as N bit unsigned integer
methods:
- subtract largest power of two
- Euclid's Division Algorithm

3. If value is negative: see "x" method on next slide

Decimal to N-bit two's complement: "x" method for negative representable values

/\? A. Solve for X
B. Represent X as

o
e Qecne X AS

C. Append a leading 1 to
\ VAWE of indicate the -2~ {N-1}
LasT nN-U DTS
(w5100
R
thoe = 37

5o TWKT

n-\

N\etaono ExamerLE

EOness -

-&

“‘%’7@

0

H o TS ComPEminNT

B+, =
x= Y

In Class Activity 2 "33 g® To 3\

If possible, express each of the following as a 6 bit two's complement value. Use the "x" method

where possible.

Sf— - 6 & 4 9
gz ?ﬁ\‘\‘ O\ D

-~ -

-S

X=9T

7= 30+
\%= 63|
(0=38+0
2=\1-3 %\

| =07 *!

(floating point if time)

Floating Point: Representing non-whole values

To express 12.345, rewrite it as:
exponent

N

12.345 = 12345 x 107°
e

significand base

big idea: the signifcand and exponent will always be whole values and we can store those!

A few notes about the "base"
- isn't the same base the number system for significand & exponent number system
(you can use base 10, as shown, and still store significand & exponent in binary)
- no need to store floating point base per individual value

img credit: wikipedia

