CS1800 day 3

Admin:

- hw1 released today (due the following friday, as nearly all HWs are)
- tutoring groups
- what to do if you can't access piazza (email Kayla and myself, we'll add you)

Content:

- Two's complement (system to represent negative binary numbers)
- Overflow
- Floating point (system to represent non-whole numbers) (if time)

Whats the difference between operating in base-b and operating in base-b on a computer?

Computers store all values with the same number of bits
why? quicker / easier

Assume: a computer is using a 3-bit representation of values. How does it compute \& store the following?

$$
\begin{aligned}
&(111)_{2}+(001)_{2}=(1000)_{2} \\
& 7+1=8 \\
& \text { BIAS CANS BE THREE } \\
& \text { STORED }
\end{aligned}
$$

For today: assume we're working with values on a computer

- all values are N -digits
(you'll be given this info in problem statement)
- discard the most significant (left-most) digits if needed (as shown in green on last slide)

Number Systems:

Currently we're missing:

- negative values
(e.g. -43)
- non-whole values

Unsigned Integers:
can represent whole, non-negative numbers

$$
(111)_{2}=7
$$

everything we've done so far are unsigned integers (we just didn't cover name until now)

$$
\text { e.g. (110)_2 = } 6
$$

- Two's Complement:
can represent whole (potentialy negative) numbers (will study today)
- Floating Point Values:
non whole-numbers
(will study today if time)

Number Systems:

Currently we're missing:

- negative values
(e.g. -43)
- non-whole values

Number systems:

- Unsigned Integers:
can represent whole, non-negative numbers
everything we've done so far are unsigned integers (we just didn't cover name until now) e.g. (110)_2 $=6$
- Two's Complement:
can represent whole (potentialy negative) numbers (will study today)
- Floating Point Values:
non whole-numbers
(will study today if time)

Sign bit*:
A not-so-great number system for negative values

Sign Bir: Probcems

Two's complement: A better way to store negative numbers

Big idea: the most significant (biggest) place value is negative, all others are positive

$$
\begin{aligned}
& 3 \\
& (011)_{\partial}+(001)_{2}= \\
& (100)_{2} \\
& \frac{1}{0} 11 \\
& \frac{001}{(100)}
\end{aligned}
$$

$$
(111)_{\partial}
$$

Two's complemevt, Prodlems Solved

In Class Activity:

If possible, convert each of the following values to the given number system. If not possible, justify why.
(Use guess-and-check as needed, a reliable decimal-to-2's-complement method coming shortly)

$(++)$ What does the 2 's complement idea look like in a base which isn't 2 ? Does it also have the properties we love so much in binary (unique zero, addition operations still work)?

What values can we represent with N bits?

Unsigned Integers

SMALLEST VALUE

Largest value

$$
\left.(\text { IIIII } \ldots . .|l| 1)_{2}=2^{N}-1\right)(\text { (IIIIIII) })_{2}=2^{N-1}-1
$$

Two's Complement

Smallest value

$$
\begin{aligned}
& (1000000)_{\partial}=-\partial^{N-1} \\
& \text { LANCET }
\end{aligned}
$$

Aod 1, Doubled largést Power

What values can we represent with N bits? (representability)

Unsigned Integers

SMALLEST VALUE

Lanoest value

$$
\partial^{N}-1
$$

Two's Complement

Smallest value

$$
\begin{aligned}
& \text { HALEST VALUE } \\
& -2^{N-1} \\
& =-2^{5-1} \\
& =-R 2
\end{aligned}
$$

LARGEST JALNE $=-32$

$$
\theta^{N-1}-1 \theta^{6-1}-1=2^{5}-1
$$

We can represent all whole values from smallest to largest (including smallest \& largest) $=31$ (we won't justify this)

Ojerfion

Overflow: the outcome of an operation can't be represented in the given number system
example from earlier in lesson: $\quad(111)_{\partial}+(001)_{\partial}=(1000)_{\partial}$
$7+1=8$ as 3 bit values
overflow since 8 can't be represented as a 3-bit value
Comsex
There are times when we discard a bit but result is correct (no overflow occurs) punchline: don't conflate discarding the bit with overflow

Decimal to N -bit two's complement: preliminary

1. Validate that value can be represented as N -bit two's complement (see "representability")
2. If value is positive, its the same as N bit unsigned integer methods:

- subtract largest power of two
- Euclid's Division Algorithm

3. If value is negative: see " x " method on next slide

Decimal to N-bit two's complement: "x" method for negative representable values

Define x AS VALDE of Last N-I BITS
(UNSIGNED)
A. Solve for X
B. Represent X as $N-1$ bit unsigned int
C. Append a leading 1 to indicate the $-2^{\wedge}\{N-1\}$
"X" METHOD EXAMPLE
Express -4 as 4 bit $7 \mathrm{Na}^{\prime} \mathrm{s}$ complement

$$
\begin{aligned}
-8+x & =-4 \\
x & =4
\end{aligned}
$$

In Class Activity 2
-32 vp to 31

If possible, express each of the following as a 6 bit two's complement value. Use the " x " method where possible.

$$
-32+x=-5
$$

$$
x=\partial 7
$$

$$
\begin{aligned}
\partial 7 & =13 \cdot \partial+1 \\
13 & =6 \cdot 2+1 \\
6 & =3 \cdot 2+0 \\
3 & =1 \cdot \partial+1 \\
1 & =0 \cdot \partial+1
\end{aligned}
$$

Floating Point: Representing non-whole values

To express 12.345, rewrite it as:

big idea: the signifcand and exponent will always be whole values and we can store those!

A few notes about the "base"

- isn't the same base the number system for significand \& exponent number system (you can use base 10, as shown, and still store significand \& exponent in binary)
- no need to store floating point base per individual value
img credit: wikipedia

