CS1800

Admin:

- hw8 due today
- hw9 \& "exam3" next Tuesday
- I hope to finish a few minutes early today and handle hw / exam content questions like we do in recitation.

Content:

- merge sort \& runtime analysis (counting comparisons in the worst case)
- skill: solving recurrence relations via substitution

Quantifying runtime (search algorithms):
Runtime: how many "operations" required to complete algorithm for input of size n
To simplify our analysis of algorithms:

- lets only count comparisons (is item less than, equal to, or greater than item?)
- lets assume the worst possible input for a given algorithm (requiring the most comparisons)

In the worst case, for an input list with n items how many comparisons are needed?

- unordered linear search

$$
\underset{- \text { binary search }}{- \text { unordered linear search }} T_{\text {wean }}(N)=N
$$

$$
T_{\text {Binary }}(N)=\log N
$$

Quantifying runtime (sort algorithms):
Runtime: how many "operations" required too complete algorithm for input of size n
To simplify our analysis of algorithms:

- lets only count comparisons (is item less than, equal to, or greater than item?)
- lets assume the worst possible input for a given algorithm (requiring the most comparisons)

In the worst case, for an input list with n items how many comparisons are needed?

- insertion sort

$$
T_{i n s e n a m}(N)=N^{\partial}
$$

Some corner sort method?

Merge Operation: Combining Two Sorted Lists Into One Sorted List
Approach: comparison: find the starting list whose current item is smallest - move this smallest item into final list

- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

1	4	7	9

inPut sorted Last 1

3	6	11	14

infer sorted last 2

Merge Operation: Combining Two Sorted Lists Into One Sorted List
Approach: comparison: find the starting list whose current item is smallest

- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

Merge Operation: Combining Two Sorted Lists Into One Sorted List
Approach: comparison: find the starting list whose current item is smallest

- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

1	4	7	9

C

3	6	11	14

Since $1<3$ we move 1 to
 ourpor and examine next item in Lust ir came from

Merge Operation: Combining Two Sorted Lists Into One Sorted List
Approach: comparison: find the starting list whose current item is smallest

- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

1	4	7	9

3	6	11	14

\&
consent
index
Since $3<4$ we move 3 to outpour and Examine next item in list ir came from

Merge Operation: Combining Two Sorted Lists Into One Sorted List
Approach: comparison: find the starting list whose current item is smallest

- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

1	4	7	9

1	3	4					

3	6	11	14

Since $4<6$ we move 4 to OUTPOT AND Examine NEXT ITEM in Lust ir came from

Merge Operation: Combining Two Sorted Lists Into One Sorted List
Approach: comparison: find the starting list whose current item is smallest

- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

3	6	11	14

4
coknost
Non de

Since $6<7$ we move 6 To output and Examine NExT ITEM in List ir came from

Merge Operation: Combining Two Sorted Lists Into One Sorted List
Approach: comparison: find the starting list whose current item is smallest

- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

1	4	7	9

1	3	4	6	7			

$$
\underset{\substack{4 \\ \text { cosiest }}}{\substack{\text { nope }}}
$$

Since $7<11$ we move 7 to ourpur and Examine Next item in Lust ir came from

Merge Operation: Combining Two Sorted Lists Into One Sorted List
Approach: comparison: find the starting list whose current item is smallest

- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

1	4	7	9

1	3	4	6	7	9		

Since $9<11$ we move 9 to OUTPOT AND Examine NExT ITEM in Lust ir came from

Merge Operation: Combining Two Sorted Lists Into One Sorted List
Approach: comparison: find the starting list whose current item is smallest

- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

1	4	7	9

1	3	4	6	7	9	11	14

3	6	11	14

SINCE ONE INPUT LIST RAN OUT of ITEMS WE MOJI ALL REMAINING iTEMS AN OTMER LBT TO OUTPUT (IN SAME ORDER)

In Class Activity:
Build a worst case (requiring the most comparisons) example of merge sort which combines two sorted lists (each of length 4) into an output list of size 8.

How many comparisons, in the worst case, will it take to combine two sorted lists (each of length $\mathrm{n} / 2$) into an output list of size n ?

Merging: Worst Case Scenario (requiring most comparisons)
Every comparison moves a single item to the output list
When one list runs out of items, the whole remaining list is moved into output (see blue highlights @ end of example a few slides ago). No comparisons are required for these remaining items!

The worst case scenario is when we move only a single item from the "remaining list" to the output.
(That is, the last items of each input list become the last two items in the output list).
< demonstrate this with cards>

Worst Case Scenario of Merge Operation: N-1 comparisons to merge two lists of size $\mathrm{n} / 2$

Punchline:
Merging so the output list has N items requires (at worst) N comparisons

Merge Sort: How do we sort a list with this merge operation?

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 3 | 7 | 9 | 14 | 6 | 11 | 2 |

Approach:
Divide the input list in half until they're all length 1 lists (which are sorted!)

Merge lists back together

Super simple, right? There are many algorithms which fit this pattern:

Divide-and-conquer: split problem into sub-problems until sub-problems easily solved

Merge Sort: Runtime Analysis (comparisons in worst case scenario) on this example

Merge Sort: Runtime Analysis (comparisons in worst case scenario) on this example

Merge Sort: Runtime Analysis (comparisons in worst case scenario) for list with n items

Quantifying runtime (sort algorithms):
Runtime: how many "operations" required too complete algorithm for input of size n
To simplify our analysis of algorithms:

- lets only count comparisons (is item less than, equal to, or greater than item?)
- lets assume the worst possible input for a given algorithm (requiring the most comparisons)

In the worst case, for an input list with n items how many comparisons are needed?

- insertion sort

$$
T_{\text {inseam }}(N)=N^{\partial}
$$

- merge sort

$$
T_{\text {merge }}(N)=N \text { Log } N
$$

Recurrence Relations:
Another way of analyzing worst case comparisons in merge sort
(Why learn another way? There are many other divide and conquer methods which don't have a fun little analysis picture like merge sort did a few slides ago ... recurrences are a tool which will work for these!)

Building a Recurrence Relation for Merge Sort:

$T(n)=$ number of comparisons it takes to run merge sort on a list of size n in worst case

$$
T(n)=2 T(n / 2)+n
$$

To run merge sort:

- split input list of size n into two lists of size $n / 2$, run merge sort on each worst case cost: 2 * $\mathrm{T}(\mathrm{n} / 2)$
- merge these two (now sorted) lists of size $\mathrm{n} / 2$ together via merge operation worst case cost: n operations (see previous "punchline")

Whats a recurrence relation?
$T(n)=$ number of comparisons it takes to run merge sort on a list of size n

$$
T(n)=\partial T(n / 2)+n
$$

Recurrence AN EOvaliey wither Expresses
REuNION = EAM ITEM OF A SEOJENLE AS
A function of Previous reams
Bad news: recurrences not easily understood (is this fast or slow growing?)

Solving a Recurrence: Substitution Method

$$
T(n)=\partial T\left(\frac{n}{\partial}\right)+n \rightarrow T(\%)=\partial T(\% / \partial)+
$$

$$
\begin{aligned}
& =\partial\left(\partial T\left(\frac{n}{4}\right)+\frac{n}{2}\right)+n \\
& =\partial^{2} T\left(\frac{n}{4}\right)+\partial n \\
& =\partial^{2}(\partial T(n / 8)+n / 4)+2 n \\
& =\partial^{3} T(n / 8)+3 n
\end{aligned}
$$

Solving a Recurrence: Substitution Method

$$
\begin{aligned}
T(n) & =\partial T\left(\frac{n}{2}\right)+n \quad k=1 \\
& =\partial\left(\partial T\left(\frac{n}{4}\right)+\frac{n}{2}\right)+n \\
& =\partial^{2} T\left(\frac{n}{4}\right)+\partial n \longleftarrow k=\partial \\
& =\partial^{2}(\partial T(n / 8)+n / 4)+\partial n \\
& =\partial^{3} T(n / 8)+3 n \longleftarrow k=3 \\
& =\partial^{k} T\left(n / 2^{k}\right)+k n
\end{aligned}
$$

By noticing a Parrean we can Ger an expression for All Terms in sequence

A helpful insight about merge sort

$T(n)=$ number of comparisons it takes to run merge sort on a list of size n

$$
\begin{aligned}
& T(n)=\partial T(/ 2)+n \\
& T(1)=0
\end{aligned}
$$

It takes 0 operations to sort a list of size 1 (its already sorted, right?)

$$
T(n)=2^{k} T\left(\frac{n}{2^{k}}\right)+k n
$$

Which k (number of substitutions) provides $\mathrm{n} / 2^{\wedge} \mathrm{k}=1$?

$$
\frac{n}{\partial^{k}}=1 \leftrightarrow n=\partial^{k} \longleftrightarrow k=\log _{\partial} n
$$

Lets use that k as it'll give $T(1)$ on the right hand side (helpful since $T(1)=0$)

$$
\begin{aligned}
T(n) & =\partial^{L 06_{2} n} \cdot T\left(\frac{n}{\partial^{106} n}\right)+n L_{00} n \\
& =n \cdot T(1)+n L_{2} 00_{2} n \\
& =n L_{2} n
\end{aligned}
$$

In Class Activity:

Solve the following recurrences (answers to all are given)
i. $T(n)=T(n-1)+1$ where $T(1)=1$
solution: $T(n)=n$

In case you'd like some practice, here's a few more examples too:
ii. $T(n)=T(n-3)+4$ where $T(1)=1$
solution: $T(n)=(4 n-1) / 3$
iii. $T(n)=7 * T(n-2)$ where $T(0)=1$ solution: $T(n)=7^{\wedge}\{n / 2\}$

i. $T(n)=T(n-1)+1$ where $T(1)=1$
solution: $T(n)=n$

$$
T(n)=T(n-1)+1 \& k=1
$$

$$
=T(n-2)+1+1
$$

$$
\begin{aligned}
& T(3)=T(-1)+1 \\
& T(n-1)=T(n-1-1)+1 \\
& T(n-2)=T(n-2-1)+1
\end{aligned}
$$

$$
=T(n-2)+2 \& k=2 \quad n-k=1 \rightarrow k=n-1
$$

$$
=T(n-3)+1+2
$$

$$
=T(n-3)+3 \leftarrow k=3
$$

$$
=T(n-k)+k \stackrel{k=m^{-1}}{=} T(1)+(n-1)=\begin{aligned}
& 1+n-1 \\
& =n
\end{aligned}
$$

ii. $T(n)=T(n-3)+4$ where $T(1)=1$
solution: $T(n)=(4 n-1) / 3$
$T(n)=7 * T(n-2)$ where $T(0)=1$
solution: $T(n)=7^{\wedge}\{n / 2\}$

$$
\begin{aligned}
T(n) & =7 T(n-2) \leftarrow k=1 \\
& =7(7 T(n-4)) \\
& =7^{2} T(n-4) \leftarrow k=2 \\
& =7^{2}(7 T(n-6)) \\
& =7^{3} T(n-6) \leftarrow k=3 \\
& =7^{k} T(n-2 k)
\end{aligned}
$$

$T(n)=7 * T(n-2)$ where $T(0)=1$ solution: $T(n)=7^{\wedge}\{n / 2\}$

$$
\begin{aligned}
T(n) & =7^{k} T(n-\partial k) \\
& =7^{\frac{n}{2}} T\left(n-2 \cdot \frac{n}{2}\right) \tau \\
& =7^{n / 2} T(n-n) \\
& =7^{n / 2} T(0)=7^{n / a}
\end{aligned}
$$

WHAT K BRINGS ME To my base case $T(0)=$?

LeTs substitute rape in!

