CS1800

Admin:
- hw8 due today
- hw9 & "exam3" next Tuesday
- | hope to finish a few minutes early today and handle hw / exam content questions like
we do in recitation.

Content:
- merge sort & runtime analysis (counting comparisons in the worst case)
- skill: solving recurrence relations via substitution

Quantifying runtime (search algorithms):

Runtime: how many "operations" required to complete algorithm for input of size n

To simplify our analysis of algorithms:
- lets only count comparisons (is itemO less than, equal to, or greater than item1?)

- lets assume the worst possible input for a given algorithm (requiring the most comparisons)

In the worst case, for an input list with n items how many comparisons are needed?
- unordered linear search

- binary search T"”““""‘L“B = N §
Vinaeq (_'Q\ = Looon é

Quantifying runtime (sort algorithms):

Runtime: how many "operations" required to complete algorithm for input of size n

To simp.Iify our analysis of algorithms:
- lets only count comparisons (is itemO less than, equal to, or greater than item1?)

- lets assume the worst possible input for a given algorithm (requiring the most comparisons)

In the worst case, for an input list with n items how many comparisons are needed?

- insertion sort
d
Tn‘o&md(“) = N

Yol otaiL Soat MUNC’D).

&‘3

e companison’

L\ST ‘Q‘Lér

Merge Operation: Combining Two Sorted Lists Into One Sorted List

Approach: comparison: find the starting list whose current item is smallest
- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

LY |71 —® [V][3]|6 [4]|T]|a |n

INPUT SonTeD Lt | / QOTPOT SeaTED ST

36| vl

INPOT SoatTED LT ©

Merge Operation: Combining Two Sorted Lists Into One Sorted List

Approach: comparison: find the starting list whose current item is smallest
- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

L4 |7 |9 1
Lo 1

36| vl

Merge Operation: Combining Two Sorted Lists Into One Sorted List

Approach: comparison: find the starting list whose current item is smallest
- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

q

'

G
c'oq,mo‘
wot*

sl VLD we it \

3 I\
oot POT AND ExAmiE Qext \Tém

st T camt G

Merge Operation: Combining Two Sorted Lists Into One Sorted List

Approach: comparison: find the starting list whose current item is smallest
- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

| |9 |7 | R 1 132

» 1
Caoer ot
< w 3 T
36| v Suee LT we e
]
'T oot 00T AND ExamnE Next 11O
Cotets’ st T camt G

Merge Operation: Combining Two Sorted Lists Into One Sorted List

Approach: comparison: find the starting list whose current item is smallest
- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

NEARAK L {2 |4

1

wot* wot*

- <o
36| v Hme Heo W MOVE '-(‘ “
'T oot 00T AND ExpMNE Next \Tém

e~ st T camt G

Merge Operation: Combining Two Sorted Lists Into One Sorted List

Approach: comparison: find the starting list whose current item is smallest
- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

1 |4 17 |9 1 12|44 |6

1. »
316 [ulm fwe LT we wwE b T

3 I\
oot POT AND ExAmiE Qext \Tém

Cotets’ st T camt G

Merge Operation: Combining Two Sorted Lists Into One Sorted List

Approach: comparison: find the starting list whose current item is smallest
- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

1 |4 17 |9 1 121 |6 |7

§". o

e
o:ofr* wot*
< & |1 T
AT e R N
[}
oot 00T AND ExamnE Next 11O
Cotets’ st T camt G

Merge Operation: Combining Two Sorted Lists Into One Sorted List

Approach: comparison: find the starting list whose current item is smallest
- move this smallest item into final list

- move current index of this list to the right

repeat above until one starting list is out of items and then:

- place all items in other list into output list, in same order

| |47 | %
316w |
Cotass™

L 13

l.‘

b

=

Q

cmee AN

out PRY

st T camt G

AND ExAmiNE Nex

Wmot*

we e \ To

< \Tém W

Merge Operation: Combining Two Sorted Lists Into One Sorted List

Approach: comparison: find the starting list whose current item is smallest
- move this smallest item into final list
- move current index of this list to the right
repeat above until one starting list is out of items and then:
- place all items in other list into output list, in same order

VY4 |7 | S 1 |24 |b |7 u |\
o™ 1‘”‘4
c':vb* o‘.’:ou-
< AN
PR ERY LT
316 w4 i;'i“'bc ey, wi thesi [ALU
NS N otnin LT

00‘“».‘ (LE'«\A |ﬂ|d ©

In Class Activity:

Build a worst case (requiring the most comparisons) example of merge sort which combines
two sorted lists (each of length 4) into an output list of size 8.

How many comparisons, in the worst case, will it take to combine two sorted lists (each of length n/2)
into an output list of size n?

Merging: Worst Case Scenario (requiring most comparisons)
Every comparison moves a single item to the output list

When one list runs out of items, the whole remaining list is moved into output (see blue highlights @
end of example a few slides ago). No comparisons are required for these remaining items!

The worst case scenario is when we move only a single item from the “remaining list" to the output.

(That is, the last items of each input list become the last two items in the output list).
< demonstrate this with cards>

Worst Case Scenario of Merge Operation: N 1 comparisons to merge two lists of size n/2

LEXS ‘omorl Tacs (=1 (T wWuo S oLy

ANANG ST CHANGSO RESE™
C,.....;en. Q-0 GROWM TrAN N

Punchline:

Merging so the output list has N items requires (at worst) N comparisons

2 3 4 5 6 8

\112|3|7|9|14|6\171|2|
divide Approach:

1 2 3 4 S 6 7 8
[12[3]7]9]
1 2 3 4 5 6 7 8
(4[] [1]2]

divide Merge lists back together
5

2 3 4 6 7 8
2] [3] [7] [o] B4 [s] [[2]

Divide the input list in half until they're

divid
e all length 1 lists (which are sorted!)

merge
|<55|164| |;|181| Super simple, right? There are many
merge , algorithms which fit this pattern:
1 2 3 4 5 6 7 8
[2]6]1]14 Divide-and-conquer: split problem into
merge sub-problems until sub-problems easily

6
|é|§|g|;|3|11|172|1i| solved

Merge Sort: Runtime Analysis (comparisons in worst case scenario) on this example

divide

divide

divide

merge

merge

merge

1 2 3 4 5 6 7 8
\12|3|7|9|14|6\11|2| Observe:

- there are no comparisons in divide
1 2 3 4 5 6 7 8
[23]7]9) CICIME - each merge operation (in worst case) uses
L2 3 4 ; - as many comparison as output list size

[134| é\ [11] 2 | (see previous slide's "punchline")
| 2 3 4 5 6 7 8
2] [3] [7] [o] [¢ [¢] [[2]

uﬂ\? e unM’
3 Qu o I NP - Ll LTS » S comP e & comP

I6|14\ 2] o

"lc.om(’ Y con®
1 2 3 4 D 6 7 8 L‘ ©
BHBE 2ofifi] TP Lwts s Hem® o gy e
LS
BEOEEDED — | Lot e Do =B cpme

L1

Merge Sort: Runtime Analysis (comparisons in worst case scenario) on this example

2

i2[3 7] [T 6 1] 2]

livide
divide Doy s 6 7 8 5 LENELS ° & u“\? :é‘" Q,QM?
12[3[7]9] MERe RO LevEL
divide
| 2 3 4 5 6 78
6] [
divide

1 2 3 4 5 6 7 8
2] [3] [7] [of [4] [¢] [1] [2]
merge a Ch"\? 3 U“\? o U’"\Q 3 oN\P

8 A .3 o
Mm\ T e wers el g e

merge "l c.om(’ NP Lot
1 2 3 4 5 6 7 8
3[7]9[12] (2] 6[1]14] > Lists » Heow® o a5 ome
merge M L‘S"
’2|%|6|7|;|1()1|172|14‘ —b | Lot ¢ O cone =& cane

Merge Sort: Runtime Analysis (comparisons in worst case scenario) for list with n items

2

1 2 3 4 5 6 7 8
1

divide L L% 'Q LeeLsS N dL\g - GC"\ wc’&
12[3]7]9] a6 1] 2] MERL WO TeEL y
divide

1

2 3 4 5 6 7 8
[4f6] [11]2]
2 3 4 5 6 7 8 B\Iv“-" LEVE VSES ‘Q
9] ComPRRGENS
) 3 4 5 6 7 8
[6]14] [2]u]

divide

merge

LEIELS
T 2 3 4 5 6 7 8 N a* — *w‘eu’:wé“
.
z (4
T ’1|2 4 5 6 7 8 Croen Excaty
213

o] 7[s 11214 B3 &—v L =126,5

Quantifying runtime (sort algorithms):
Runtime: how many "operations" required to complete algorithm for input of size n
To simplify our analysis of algorithms:

- lets only count comparisons (is itemO less than, equal to, or greater than item1?)
- lets assume the worst possible input for a given algorithm (requiring the most comparisons)

In the worst case, for an input list with n items how many comparisons are needed?
- insertion sort

Tnscmd L“) X\

TN\\‘J'-C:€ Lg} = N W Q)

- merge sort

Recurrence Relations:
Another way of analyzing worst case comparisons in merge sort
(Why learn another way? There are many other divide and conquer

methods which don't have a fun little analysis picture like merge sort
did a few slides ago ... recurrences are a tool which will work for these!)

Building a Recurrence Relation for Merge Sort:

T(n) = number of comparisons it takes to run merge sort on a list of size n in worst case

T(“\Bc a T(“/g) +)
To run merge sort:

- splitinput list of size n into two lists of size n/2, run merge sort on each
worst case cost: 2 * T(n/2)

- merge these two (now sorted) lists of size n/2 together via merge operation
worst case cost: noperations, (see previous "punchline")

T(n) = number of comparisons it takes to run merge sort on a list of size n

S T(“/a} + 6

< A
s Xenwms§

A Conctond ot Prevoo

Bad news: recurrences not easily understood (is this fast or slow growing?)

Solving a Recurrence: Substitution Method

T(n)=37(S)+ — T(#)-3T(%) -
aCaTC D T@Yr a1 ()+3
EMOE 92 @))y

3 S T(_‘\/b > a 0 Each time we see the T function

on the right hand side:
- substitute for equivilent expression

<= a T L 153 4 3“ using recurrence (i.e. green / red)

- simplify resulting expression

Solving a Recurrence: Substitution Method

J)

\

By wotii, &
Quaxcead WE AN
Coet AN EmPQESSION

Corn AL Tenms
N SEQIENCLE

T(n) = number of comparisons it takes to run merge sort on a list of size n

T(«\): S T(‘\/s +
T(‘3= 0

It takes O operations to sort a list of size 1 (its already sorted, right?)

‘TG\3= Q- T(%} r La

Which k (number of substitutions) providesn/ 27k = 17

QA ‘
a*‘\‘—"“’é v v. = Loeg N
Lets use that k as it'll give T(1) on the right hand side (helpful since T(1) = 0)

)= 3" T(m) +atooan
= O o TL‘S."“ Looy N

N\ Wogy ©

In Class Activity:
Solve the following recurrences (answers to all are given)

i.T(n) =T(n-1) + 1 where T(1) =1
solution: T(n) = n

In case you'd like some practice, here's a few more examples too:

ii. T(n) =T(n-3) + 4 where T(1) =1
solution: T(n) =(4n-1)/3

iii. T(n) = 7 * T(n-2) where T(0) = 1 Coce C
solution: T(n) = 7~ {n/2} 4— SoLotiond on YSE TR AN

. T(N)=T(n-1)+ 1 whereT(1)=1

solution: T(n) = n -T (,5 '=—((t _b «
T(}\)’:TQ\-W-\-\ & =) T(“’\\B':T n-\'-b*\
= T(a-3)) * \ T(ed) = Tled M)
=T(n3)d ¢ v Q-ks) v o)
= T(\‘\-B)""\ +d
= T(t\-'S) AY A LS
T L‘_ K\ - :v\ < L \ >+L|\-\3-= (%o~

=N\

ii. T(nN) =T(n-3) + 4 where T(1) =1
solution: T(n) =(4n-1)/3

T(n
SO|L)Iti=O7 -
r:{r(wr)]Z)
2 7V\//\her
() 7 =1
: 7“‘((«\-9
. 4-\)\4 :
t\"'-\>= | (
T z)
o 7
T Z«\-ﬂg ; 5
-.l.‘ T -
=T T(Z B
~0)

= 73_(.
(»
-..\) 4&—
w
3

= 7“(7 T (. B
)

= 73
i AY
7" f‘[‘")
A= ; -
: -

T(n) =7 *T(n-2) where T(0) =1 .
solution: T(n) = 77 {n/2} WHAT K bames ME 2
To Ny Oase CAME ‘T(“)'\ .

TC‘\Y’?‘TU\-B\‘\ N=Qw=0 «*> «w=2

o

/

QO
=7a T(r\-a'%‘» T—— Lsts> Semvmmte

T L ;Q\a
7 ()
c —?nla T(OB _ ~T\Ie

