CS1800 day 13

Admin:

- exam1 \& hw4 graded to you next week
- hw5 released next friday
enjoy the break from hw :)
Content:
- Probability (random variable, outcome, distribution)
- Computing prob of event from equal prob outcomes
- Expected Value
- Variance
objective: predict the outcome of a coin flip prize: fleeting satisfaction of having been correct once approach?
a similar? problem:
objective: predict the outcome of a coin flip
prize: world peace, universal happiness and calorie free cake (that tastes just as good) for all approach? same as above?

Why study probability?
Probability allows us to build simple, effective models of the world from relevant data, (otherwise we must model complex details of how something really works)

ChatGPT: a glorified "next-word" prediction

- how common is "dog" if the preceding N words were:
"the quick brown fox jumps over the lazy ..."

Netflix reccomendation:

- among all people who like similar movies, what are popular movies which the user hasn't yet seen?

Self driving cars:

- among all the times I've been in this position on the road, how often does this car turn right even without signalling?

Probability: intro definitions
"Experiment" - the thing we're trying to model
Coin FLip
Die Rove
Outcome (of an experiment) - a particular result of the experiment
HEADS

Sample space (of an experiment) - the set of all possible outcomes

$$
S=\left\{\begin{array}{c}
\text { Distribution (of } \\
\text { An experiment) - the probability of each outcome }
\end{array}\right\}=\{1,0,3,4,5,6\}
$$

1	0	3	4	5	6
$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$

Probability: Notations

A BT T AMBIGUOUS

Let W be Random Varibisle REPRESENTING NETHER TODAY
les sample space is $S_{\omega}=\left\{\omega_{0}, \omega_{1}, \omega_{0}\right\}$

$P\left(W=\omega_{0}\right)=40 \%$

Let W be random Varibble
Some focks Qrefer O wsteao
of wo if more Representing Nerger Todarl

Convention
(A reauly hecproc one)

Probability: axioms (necessary conventions, kind of like a definition)

Axiom 1. Probability is positive
"Axiom $2 \& 3$-ish". The sum of the probability of all outcomes in the sample space is 1

$$
P(\text { cor })=4 \%
$$

$P($ (ane) $) 00 \%$

$$
P(S O N)=40 \%
$$

Uniform Distnibution
Uniform Distrioution Assions Equal Prois To All ourcomes in sample space

$$
\begin{aligned}
& \text { Farr coin } \\
& \text { far DiE } \\
& \text { (H) (T) } \\
& 50 \% \text { 50\% } \\
& \begin{array}{ll}
\square 16 & 0 \\
16
\end{array} \\
& \text { (3) } \\
& P(x)=1 /|s| \& S \text { is samper space }|s| \text { is } \# \text { exemeats in } S
\end{aligned}
$$

Event Subset of sample space

Computing Pros from uniform Distribution

$$
\begin{aligned}
& P(x)=\frac{\text { \# ELEMENTS in Event } x}{\# \text { ELEMENTS in SAMPLE SPACE }} \\
& \text { if } x \\
& \text { is uniform }
\end{aligned}
$$

in CLASS ACTVITY:
6 sioed
given a farr dic Compute Probs of eacm Evert

$$
\begin{array}{c|c|c}
x=R_{\text {ou A A }} & Y=\text { ROL AN } & z=\text { RONL A } \\
E=\{13 & E=\{2 \quad 46\} & E=\{2,3,5\} \\
P(x)=\frac{|E|}{|S|}=\frac{1}{6} & P(y)=\frac{|\epsilon|}{|S|}=\frac{3}{6} & P(z)=\frac{|E|}{|S|}=\frac{3}{6}
\end{array}
$$

Rano.m Vaniable
LET D_{i} be ourcome of FAir Die

Som of two 4-siped die noces

Simulate 2 four sided die:
https://www.gigacalculator.com/randomizers/random-dice-roller.php
OUTCOME COUNTER (HISTOCRAM)

outcone	2	3	4	5	6	7	8
\# remes	1	4	7	2	5	6	6
osfenced							
P/ $2 B 1 / 41$	$4 / 41$	$7 / 41$	$12 / 41$	$5 / 41$	$6 / 41$	$6 / 41$	

WMAT is Distribution of $x=D_{1}+D_{2}$

$$
S_{t}=\{1234\}
$$

$$
\begin{aligned}
& S \times S=\{(1,1)(1,0)(1,3)(1,4) \\
& (0,1)(0,0) \quad(0,3) \quad(0,4) \quad P(x=5)=\frac{4}{16} \\
& (3,1)(3,2)(3,3)(3,4) \quad P(x=2)=P(x=8)= \\
& (4,1)(4,0)(4,3)(4,4)\} \quad 1 / 16
\end{aligned}
$$

Expected Value
Expected value is AN "Average" outcome of A Random variable
"Double $S=\{\partial, 0\}$

w	$P(w)$
$\$ 2$	$3 / 4$
$\$ 0$	$1 / 4$

Expected Vale: Computation
Intuition: multiply every outcome by its corresponding probability, add up all results
Suppose x Has sample space $\{-1,100,4\}$

$$
\begin{aligned}
& \text { "Eroureo } \in[x]=-1 \cdot P(x=-1)+100 \cdot P(x=00)+4 \cdot P(x=4) \\
& \text { of } x \\
& \begin{array}{c}
\text { Compute inner team } \\
\text { Gr all } x \in S \text { and } \\
\sum_{x \in S} x \cdot P(x), ~
\end{array} \\
& \text { aOl tran Tookmior } \\
& E[\partial x]=\sum_{x \in S} 2 x \cdot P(x)
\end{aligned}
$$

In Class Activity:
The following three distributions describe the winnings (right column) and their associated probs (left).
Compute the expected value of each of the following lottery tickets.
How are the tickets similar, how are they different? Which would you prefer to have?

Comparing Distributions (larger Shaded Area \rightarrow More Pros)

Variance of a random variable:

Intuition: variance is a measurement of typical distance is to its own expected value (how much "varying" do the outcomes do?)
"Steady Lotto" is typically very close to its expected value
"Double Lotto" isn't super close or super far from expected value
"Shoot for moon lotto" is typically far from its expected value
(small variance)
(medium variance)
(large variance)

Variance of a random variable: computing (1 of 2)
Intuition: variance is a measurement of typical distance is to its own expected value
(how much "varying" do the outcomes do?)

Quantification:

$$
\begin{aligned}
& \text { "Oonble } \\
& \operatorname{VAR}(x)=E\left[(x-E[x])^{2}\right] \\
& \operatorname{Var}(D)=\sum_{x \in S}(D-E[D])^{2} \cdot P(D=d) \\
& \begin{array}{c|c|c}
P(0) & 0 & D-E[0] \\
\hline 1 / \partial & \$ \partial & 1 \\
1 / \partial & \$ 0 & -1
\end{array} \\
& =12 \cdot 1 / 2+(-1)^{2} \cdot 1 / 2 \quad E[D]=1 \\
& =1
\end{aligned}
$$

Variance of a random variable: computing (2 of 2)
Intuition: variance is a measurement of typical distance is to its own expected value
(how much "varying" do the outcomes do?)

Quantification (2 of 2):
"Double

$$
\begin{array}{rlrl|l}
\operatorname{Var}(x) & =E\left[(x-E[x])^{2}\right]_{2} & & P(0) & 0 \\
\hline 1 / 2 & \$ 2 & 0^{2} \\
& =E\left[x^{2}\right]-E[x]^{2} & & 1 / 2 & \$ 0 \\
\operatorname{Var}(0) & =E\left[0^{2}\right]-E[D]^{2} & & E[0]=1 \\
& =2-1^{2}=1 & & E\left[0^{2}\right]=4 \cdot 1 / 2+0.1 / 2=2
\end{array}
$$

Why give two Equations for same Tinge?

Standard Deviation:
The square root of variance (intuition is the very same)

For this reason we also use σ° As notation For $\operatorname{Var}(x)$

Why have two measurements of the same thing?
Sometimes easier to use one vs the other. Consider that radius \& diamter have similar redundancy.

In Class Activity:

Compute the variance of the remaining two lottos. Validate that your quantification is consistent with the intuitions we've previously developed.

Suppose there is one more lotto:
"Good deal lotto":

- has a larger expected value than all others
- has a larger variance than all others

Tell if the following statements are true or false. If false, clarify them by rewriting to a true statement.

- "good deal" outcomes must always be higher than the other lottos
- every "good deal" outcome is further from the "good deal" expected value than all other lotto outcomes are to their own expected values

$$
\begin{aligned}
& =1.01-1^{8}=.01 \\
& E[s]=\sum_{x \in s} s \cdot P(s)=.9 \cdot 1 / 2+1.1 \cdot 1 / 2=1 \\
& E\left[s^{0}\right]=\sum_{x=S} s^{2} \cdot P(s)=(.9)^{2} \cdot 1 b+(.1 .)^{2} \cdot 12=1.01
\end{aligned}
$$

$$
\text { "suove Fon } M \text { Moors" } \quad E[m]=1 \quad \operatorname{Var}(m)=E[(M-E[m])]
$$

$P(M)$	M	$M-E[M]$
$1 / 1000$		
9991000	$\$ 0$	909

$$
\begin{aligned}
& =\sum_{m \in S}(m-E[m])^{2} \cdot P(m) \\
= & 999^{0} \cdot \frac{1}{1000}+-1^{2} \cdot \frac{999}{1000} \\
\approx & 999
\end{aligned}
$$

Variance (intuition building):

Order the following experiments from smallest to largest variance (or are two equivilent?)
$X=$ outcome of a 100 sided die
$Y=$ outcome of a 1000 sided die
$Z=$ height of student, uniformly chosen, from this room (measured in meters)
A = height of student, uniformly chosen, from this room (measured in miles)
$B=1$ with probability of 100%
$C=2$ with probability of 100%

