CS1800 (Discrete Structures)

Day 1
Welcome to CS1800 :)

Agenda:

- Make some friends
- What does it take to be effective at math?
- how to be successful in CS1800
- Admin stuff:
- syllabus review
- please use piazza!
- Numbers in different bases
note to self: record this $135-315$

Make some friends :)
(I have some instructions)
变

Garden Gnome Problem (please avoid working on this before day1, thank you!)

Given an arbitrary lineup of gnomes with red or blue hats:

Front

- - -

A monster starts at the back of the line and asks each, "What color is your hat?":
correct response ----> gnome lives
incorrect response ----->gnome is eaten!

Where all the gnomes can:

- see all the gnomes in front of them
- hear the response (red / blue) and outcome (eaten / not eaten) of each response behind them

How can the gnomes use *only the responses to signal each other to maximize gnome survival?

In Class Activity 1 (no submissions for any in class activity)

Take 5 to 7 minutes and work on the gnome problem in a small group (no more than 5 please) of your new friends.

Be mindful of how you feel* during the course of the problem. I'll ask a few folks to share this (individually and collectively) just afterwards.
*yes I mean the touchy-feely stuff: e.g. confident, uncomfortable, embaressed, frustrated, excited, angry, fatigued, proud

How did we feel doing math?
felt kind dumb

Being an effective math student:

- Being confused is part of doing a math problem, you're welcome to be confused!
- Hard feelings (frustration, self-doubt, fatigue) will tax our motivation / sharpness:
- work with a good friend (and be a good math friend)
- be generous and patient helping each other
- take care of your circumstances:
- eat / sleep well
- start work early to allow more time if needed
- Don't ignore hard thoughts (e.g. "that HW grade is much lower than I would've liked"), take productive steps for yourself (visit me in office hours!)
- Have fun! (really, no joke: math can be fun). Fun will sustain you while you're working

Succeeding in CS1800:

1. Attend all classes in person
2. Work hard and be super friendly / cooperative in recitation
3. Start your HW early
(read it on the day assigned)
4. Make use of office hours
(tip: further from due date its super quick to get an appointment)

If you're doing all of this and you'd still like more support, know that we'll be starting a small group TA-led weekly HW tutor session. (details to come)
<website / syllabus policy review \& q/a>
(there's some fun math coming just after, I promise!)

Anatomy

Numbers
$0,1,2,3, \ldots, 9$
ARE OUR 10 DiGIT

How Do frogs (8 fingers) or comportry (a fingers) represent vales?

Base 2-Binaey: intuition
what value does (10110.1)a Represent?

$$
(1010)_{\partial}
$$

$$
9+0+2+0=10
$$

Binary seems ODO, where Does that representation SYSTEM COME from?

Base-10 (Deumac): Reoneswranc vanes w/ 10 Dicies

$$
\begin{aligned}
192 & =100 \cdot 1+\left(10 \cdot 9+10_{i=2}^{10} \cdot 2\right. \\
& =1+{ }_{i=1}^{10} \cdot 9+2
\end{aligned}
$$

equm place value represents a vaue of 10^{i}

Base-a (Banary): Remesewranc Vawes al a Dicies

$$
\begin{aligned}
(110)_{2} & =4 \cdot 1+2 \cdot 1+1 \cdot 0=6 \\
& =2^{2} \cdot 1+2^{1} \cdot 1+2^{2} \cdot 0
\end{aligned}
$$

Notice:

- we use Panentanses w/ sobscript to indiare Binaey (Assomet Base-w oryerwise)
- Binaar has oncy a digres: 0,1

Decimal and Binary: comparison

The i-th place represents B^{i}

Base 16 (HExaOECIMAL) RePneswinto Vawes w/ 16 Dibies

$$
(12 F)_{16}=1 \cdot 16^{2}+2 \cdot 16^{\prime}+15 \cdot 16^{\circ}
$$

Hex Has 16 Dibirs

$$
\begin{aligned}
& \text { BIT }=\text { BINARY DiGIT } \\
& (\text { ETHER O OR } 1)
\end{aligned}
$$

In Class Activity 2

- What is the smallest and largest value you can represent with 3 binary digits (bits)?
- What are all the values you can represent with 3 binary digits?
- If you wrote these all out in a big column, the smallest on top and largest on bottom, what patterns do you notice?

Stuck?

Try solving a simpler problem by changing "binary" to "base-10" above.

- Ask for help (and check if your new friends need any), cooperation encouraged!

(++ if you still have time)

- What are all the values you can represent with 10 binary digits?
- What are all the values you can represent with N binary digits?
- What are all the values you can represent with N digits in base b ?

all even numbers have a 0 in the 1 's place "the 1's place tells us if the number is odd"

