CS 1800
10/31 -Tres.
Admin

- Hos are Fri
- Hole at Fri
- back to recitations this wack

Agenda

1. Graph Overviews
2. Graph representation

$$
\begin{array}{lll}
0 \\
k & K
\end{array}
$$

3. Graph equality
4. Graph Overview

Graph arigin stony Euler - Kronigsbery

- go to pub in every neighborhood
- cross every bridge ending once
- Y neighborhoods
- 7 bridges
\rightarrow map... graph (nus concept!.)
so he could solve the polder
(wants to be math maticie)
- neighbor hood $==$ vertex
- bridge $==$ edge

goze: Visit prey vertex tharesse every edge tacky once
- need edge to enter a visit
- need another ane to leave

3 edges incident on a vertex ($A, B, 0$)
A: leave, cone, leave
B, D: Come, leave, cane + now stuck!
Insight:

- vertex has odd \# incident edges
- we can start there, or end there
- but, we need are vertex to start, ind are to end
- for problem to be solved, need two vertices
with oud \# of edges

c
Every map tar be roped as a graph!
- directions
- Google maps

Also used for...

- rapping relationships (linked in insta)
- rec. Systems
- reperdencies (OS, scheowling)

Vocab wads

$$
G=\underset{\substack{(V, E) \\(V, E)}}{\substack{\text { venice }}}
$$

cage (μ, v) vertex μ and vertex v are connected
μ

$$
V
$$

u is adjacent to v
V is adjacent to M
μ, v are neighbors
a vertex has incident edges

\# incident edges $==$ "degree" of a vertex

$$
\operatorname{dg}(u)=2
$$

multiedge: two ir mare edges connecting the same vertices graph can be: directed, undirected
weighted, unweighted

A
undirected, unweighted
undirected, weighted

(A, B) but not (B, A) B is adj to A A is not adj to B
directed, unweighted
path: list of vertices, successive edges
$\begin{array}{ll}A, B, C & \text { unbid } \\ \vdots \\ A, C, B & \text { insured }! \\ \vdots\end{array}$
(2usy t one way streets)
not multi-eage
(c)

Cycle: path that bajins/ends
at sane vertex

no Cycle

Cycle! A, B, C, A

Strongly cannected:
path from every vertex to eveny other veatex

stringly connceted
not stringly canneeted (A by itsut is a adid grph)
tree: no cycte
lotype of graph

Simple gruph

- undireeted - no multi edjes
- un weignted - no secf edges

2. Graph Representation
3. Adjacency list

4. Adj list

- vang vertex
- exch has a list of neighbors
(ex) undirected, unweighted

$$
\begin{aligned}
& A: B, C, D \\
& B: A, D \\
& C: A, D \\
& D: A, B, C
\end{aligned}
$$

[ex] directed, unweighted
2. Adj matrix

- Sd table
- 1 it edge (u, v)
- O otherwise

	A	B	C	D
A	0	1	1	1
B	0	0	1	1
C	0	0	0	1
D	1	1	0	0

B
A

- which ad we use?
- Different reps for different problems!.

- ada new vertex
- (undirected) less space, especially if graph is sparse
- given a vertex, un we neigh burs?

- does edge (a, v) exist?
- Case to cant edges
- easy to red weights

u is not adj to v v is $2 d j$ to μ u has neighbor v \checkmark has no neighbors

3. graph equality

- graphs dent need to look the same to be the same
- Structural equality

Isomorphism
/小

- 2 graphs
- might look diff
- might have diff vertex (zbels
- thy we isomorphic it 1-1 correspondence between vertices that preserves adjacency

Given 2 graphs, wee they iso mopnic?
ls it so, uniat is the mapping?
(ex)

Ag list:

Sometimes helpful... degree seapence
lett: $(2,2,2,2)$ every vertexes agree
It 2 graphs are isomorphic, then they here the sane degree sequence
(helpful stating point.)
(ex)

dey Ser: $(3,1,1,1)$

$$
A: B C D
$$

$B: A$
$C: A$
$D: A$

Any isomorphic graph would two the same agree sequence

Are 2 greps isomorphic?

- If degree sags $2 r e$ different, no!.
- If degree secs were the same, maybe!

$3: 1,2,4$	$A: B C D$
$4: 3$	$D: A$
$1: 3$	$B: A$
$2: 3$	$C: A$

Stert wi deyrees!

$$
\begin{aligned}
& (3,1,1,1) \\
A & -3
\end{aligned}
$$

$$
B-1
$$

C-2
Same!
D-4

