CS1800 day 3

Admin:

- hwl released today (due the following friday, as nearly all HWs are)
- tutoring groups

- what to do if you can't access piazza (email Kayla & myself please)

Content:

- Two's complement (system to represent negative binary numbers)
- Overflow

- Floating point (system to represent non-whole numbers) (if time)



Whats the difference between operating in base-b and operating in base-b on a computer?
Computers store all values with the same number of bits
why? quicker / easier

Assume: a computer is using a 3-bit representation of values. How does it compute & store the
following?
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For today: assume we're working with values on a computer

- all values are N-digits
(you'll be given this info in problem statement)

- discard the most significant (left-most) digits if needed
(as shown in green on last slide)



Number Systems:

Currently we're missing:
- negative values (e.g. -43)
- non-whole values (e.g. 321.12358)

Number systems:

- Unsigned Integers:
can represent whole, non-negative numbers
everything we've done so far are unsigned integers (we just didn't cover name until now)
e.g.(110) 2 =6

- Two's Complement:
can represent whole (potentialy negative) numbers
(will study today)

- Floating Point Values:
non whole-numbers
(will study today if time)



Number Systems:

Currently we're missing:
- negative values (e.g. -43)
- non-whole values (e.g. 321.12358)
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Number systems:

- Unsigned Integers: é‘ \\ S :_-‘7
can represent whole, non-negative numbers

everything we've done so far are unsigned integers (we just didn't cover name until now)
e.g.(110) 2 =6

- Two's Complement: ‘ \\ _ ‘?
can represent whole (potentialy negative) numbers -

(will study today) 9 >
- Floating Point Values:

non whole-numbers \"é"bc_\g

(will study today if time)



Sign bit*:

A not-so-great number system for negative values
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Two's complement: A better way to store negative numbers

l Example: 3-bit two's complement
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Two's complement is equivilent to unsigned © t \ :)
for non-negative values
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result may be
represented (more later)






In Class Activity:

If possible, convert each of the following values to the given number system. If not possible, justify

why.

(Use guess-and-check as needed, a reliable decimal-to-2's-complement method coming shortly)

o \
0 unsigned 2 bit integer o)
-2 unsigned 3 bit integer I.}.\_

0 3 bit 2's complement

-4 3 bit 2's complement(\
-4 4 bit 2's complement ( o0
o \a

5 4 bit 2's complement
10 4 bit 2's complement
-3 4 bit 2's complement
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(++) What does the 2's complement idea look like in a base which isn't 2? Does it also have the
properties we love so much in binary (unique zero, addition operations still work)?
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What values can we represent with N bits?

Unsigned Integers [ Two's Complement
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What values can we represent with N bits? (representability)

Unsigned Integers
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We can represent all whole values from smallest to largest (including smallest & largest)

(we won't justify this)
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Overflow: the outcome of an operatig e represented in the give r system
example from earlier in less é(\ 4 Cbo\ > = (2«000
>b
7 + 1 = 8 as 3 bit values + Oecang

overflow since 8 can't be represented as a 3-bit value

L+ | =
{\E Common misconception:A

There are times when we discard a bit but result is correct (no overflow occurs)

punchline: don't conflate discarding the bit with overflow



Decimal to N-bit two's complement: preliminary
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1. Validate that value can be represented as N-bit two's complement (see "representability")

2. If value is non-negative, its the same as N bit unsigned integer
methods:
- subtract largest power of two
- Euclid's Division Algorithm

3. If value is negative: see "x" method on next slide



Decimal to N-bit two's complement: "x" method for negative representable values

/‘\? A. Solve for X
B. Represent X as N-1 bit

. unsigned int
D&" ne X A‘S C. Append a leading 1 to
VAWE of indicate the -2~ {N-1}
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If possible, express each of the following as a 6 bit two's complement value. Use the "x" meth
where possible.

- 53 s B o Yo 2 O) QLEQRESENTABLE ¢
5 \ (\ \ ol \ “x Q) © new-Nee,
@ USE ONSIenEO
(s 5’!“\'53

-y + XK= -5 (-3 e e st

o =
@oo ° )A = ot BtI+] Qu O‘Baz )



(floating point if time)



Floating Point: Representing non-whole values

To express 12.345, rewrite it as:
exponent

N

12.345 = 12345 x 107°
N—— ~~
Asigniﬁcand base

%A NIAKTISOA
big idea: the signifcand and exponent will always be whole values and we can store those!

A few notes about the "base"
- isn't the same base the number system for significand & exponent number system
(you can use base 10, as shown, and still store significand & exponent in binary)
- no need to store floating point base per individual value

img credit: wikipedia
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