CS1800 day 3

Admin:

- hwl released today (due the following friday, as nearly all HWs are)
- tutoring groups

- what to do if you can't access piazza (email Kayla & myself please)

Content:

- Two's complement (system to represent negative binary numbers)
- Overflow

- Floating point (system to represent non-whole numbers) (if time)

Whats the difference between operating in base-b and operating in base-b on a computer?
Computers store all values with the same number of bits
why? quicker / easier

Assume: a computer is using a 3-bit representation of values. How does it compute & store the
following?

- om»(Cucse Tanet
C\l\} (oo \ Ors can BE

S<oRED
7 % = D
Tas S VedED

For today: assume we're working with values on a computer

- all values are N-digits
(you'll be given this info in problem statement)

- discard the most significant (left-most) digits if needed
(as shown in green on last slide)

Number Systems:

Currently we're missing:
- negative values (e.g. -43)
- non-whole values (e.g. 321.12358)

Number systems:

- Unsigned Integers:
can represent whole, non-negative numbers
everything we've done so far are unsigned integers (we just didn't cover name until now)
e.g.(110) 2 =6

- Two's Complement:
can represent whole (potentialy negative) numbers
(will study today)

- Floating Point Values:
non whole-numbers
(will study today if time)

Number Systems:

Currently we're missing:
- negative values (e.g. -43)
- non-whole values (e.g. 321.12358)
Qe O

Number systems:

- Unsigned Integers: é‘ \\ S :_-‘7
can represent whole, non-negative numbers

everything we've done so far are unsigned integers (we just didn't cover name until now)
e.g.(110) 2 =6

- Two's Complement: ‘ \\ _ ‘?
can represent whole (potentialy negative) numbers -

(will study today) 9 >
- Floating Point Values:

non whole-numbers \"é"bc_\g

(will study today if time)

Sign bit*:

A not-so-great number system for negative values

) L
3 (g Ot BT

(@) o-mmvé"’a

L,‘rgi \a \([
| (O |O
\ ~ (—0{-‘03:- 0 Llﬂ\at-\

%‘ 5 QD
6 ‘
oo
o m
‘“
Q' «

ZEQ
o
Léso LS
D‘MQD

(ooo> =0
o | L), b
4, 4 ﬁ

(\0033==-O
-k
= O

| @

Two's complement: A better way to store negative numbers

l Example: 3-bit two's complement

~{«Q *\=-|\

Two's complement is equivilent to unsigned © t \ :)
for non-negative values

Tt's compumenT Casgiemy Secved

‘ Ooo_ o?éﬂ.k'“bk)s \4\&59
Léso LS

ONIOUE
CEQD

(<Doo>a =0

o |

al

—

(\m 33 * (?°Be‘

con R TS

D‘saﬁo

(SN

O

* Assumes that correct
result may be
represented (more later)

In Class Activity:

If possible, convert each of the following values to the given number system. If not possible, justify

why.

(Use guess-and-check as needed, a reliable decimal-to-2's-complement method coming shortly)

o \
0 unsigned 2 bit integer o)
-2 unsigned 3 bit integer I.}._

0 3 bit 2's complement

-4 3 bit 2's complement(\
-4 4 bit 2's complement (o0
o \a

5 4 bit 2's complement
10 4 bit 2's complement
-3 4 bit 2's complement

—éﬂ

=4 9

Clele]

lev{r 03+ 0-\ =4

L

o|o

_— (\ p©
G\oo’)éo

(++) What does the 2's complement idea look like in a base which isn't 2? Does it also have the
properties we love so much in binary (unique zero, addition operations still work)?

x S e,
oy ComP > &

N

(Qu%;’? o> Btewes™

H e d'6 Lm®

What values can we represent with N bits?

Unsigned Integers [Two's Complement
aN \ ‘ "QN‘\O o o a\ ao
\o 1 \01‘\‘\‘\(1
& MALLEST VALOE SMALLEST VM—OL;:‘ -\
(000000033 =0 - 3
AL_Q&
L AneesT VALE LiacesT

“\
uu\u(uD Q (O\\\lu\l\ﬁga C’;N -

What values can we represent with N bits? (representability)

Unsigned Integers
o

M. 3 9

UL

& MALLEST VALVE

O

L AQeEsT VALE

3" -\

r

Two's Complement
o

~PleLr S 9

NN

SMAstT VALVE _ ‘
_ éN -\ - é - . 8

L, 5T J ADVE

7 -\

-1

3 =T

We can represent all whole values from smallest to largest (including smallest & largest)

(we won't justify this)

o
O IEACow maj) (“ \\ B
)

Overflow: the outcome of an operatig e represented in the give r system
example from earlier in less é(\ 4 Cbo\ > = (2«000
>b
7 + 1 = 8 as 3 bit values + Oecang

overflow since 8 can't be represented as a 3-bit value

L+ | =
{\E Common misconception:A

There are times when we discard a bit but result is correct (no overflow occurs)

punchline: don't conflate discarding the bit with overflow

Decimal to N-bit two's complement: preliminary

"aﬂ."‘" 95 g‘b 3 3°

Lt i

1. Validate that value can be represented as N-bit two's complement (see "representability")

2. If value is non-negative, its the same as N bit unsigned integer
methods:
- subtract largest power of two
- Euclid's Division Algorithm

3. If value is negative: see "x" method on next slide

Decimal to N-bit two's complement: "x" method for negative representable values

/‘\? A. Solve for X
B. Represent X as N-1 bit

. unsigned int
D&" ne X A‘S C. Append a leading 1 to
VAWE of indicate the -2~ {N-1}
Last N-U TS
W=
i

l?o < R’r

8-\
K= \ALWE + &—

M\ etweo

EOness -

- ALy

v 1 tlolof
Y =

EXOMPLE

0

-_HK

Y=x

H o«

Fu'S ComPUEMENT

N-\
In Class Activity 2 6"\'\%&5’("é . —) S -
Laaoes—T = Tl \ < 90"‘_\
o

If possible, express each of the following as a 6 bit two's complement value. Use the "x" meth
where possible.

- 53 s B o Yo 2 O) QLEQRESENTABLE ¢
5 \ (\ \ ol \ “x Q) © new-Nee,
@ USE ONSIenEO
(s 5’!“\'53

-y + XK= -5 (-3 e e st

o =
@oo °)A = ot BtI+] Qu O‘Baz)

(floating point if time)

Floating Point: Representing non-whole values

To express 12.345, rewrite it as:
exponent

N

12.345 = 12345 x 107°
N—— ~~
Asigniﬁcand base

%A NIAKTISOA
big idea: the signifcand and exponent will always be whole values and we can store those!

A few notes about the "base"
- isn't the same base the number system for significand & exponent number system
(you can use base 10, as shown, and still store significand & exponent in binary)
- no need to store floating point base per individual value

img credit: wikipedia

1Y \>S ,3

-\ -9
‘0'3 |°‘ \6 \O \O 10

AEEREN

\ .
1D + =+
o (&

U

AL 16 16

6>,

