$\operatorname{cs} 1800$
9/26-Tues.
Aamin

- Hu2 dreFn 11.59
- Rec 3 m Qu'z are 1012 apm Solutions posted Fi (a(2a)
- Live QaA an piazzz (Eer grestions in Cec)

Agenda

1. Circuits
2. Sets
3. Set operations
4. negation of logic statements
\Rightarrow shorter
we can do everything with $n \vee \neg$

1．Circuits
－Logic is great un its own，克

build computers predicates reason
pare things
－Logic：TrelFzlse
－Systems
onloft in a tansister
Solve problems！
－operators \rightarrow gates
－input $\longrightarrow 1 / 0$
on loft on a transistor
－Company
Rnd

Logic Statement: $(\neg A \cap \neg B) \vee(A \wedge \neg B) \equiv \neg B$

onegate one input
(why we simplify to use as few operators wo possible!)
2. Sets

- A set is a discrete structure
- unordered $\begin{aligned} & \text { - } \\ & \text { distinct }\end{aligned}$ elements

$$
\begin{aligned}
& \underset{\text { cap }}{S}=\{2,4,6,8\} \\
& \text { y cory braces } \\
& T=\left\{2, \text { dog, as, }{ }_{i}^{\prime \prime}, \text { snickers }\right\}
\end{aligned}
$$

(elements are useley connected but dent have to be)
ϵ
"is an element of"
Snickers $\in T$

- decorative $\}$ logic statement!.
- troth valve
$\notin \quad$ "is not $2 n$ element of"
milky vary $\notin T \rightarrow$ logic statement!
c "is a subset of"

$$
\begin{array}{llll}
\{2,6\} \leq S & \{2\} & \leq S & S \leq S \\
\{8,2\} \subseteq S & \} & \leq S &
\end{array}
$$

- every Set is a subset
of itself
T logic statements!
- \{\} ~ i s ~ a ~ s u b s e t ~ o f ~ e v e r y t h i n g . ~
C "is 2 proper subset of"

$$
\{4,6,8\} \subset S \quad\{2,4,6,8\} \subset S
$$

Toe

$$
\} \subset S
$$

Representing Sets

- roster - list out all emma elements

$$
S=\{2,4,6,8\}
$$

- roster with pattern

$$
S=\{2,4,6,8, \ldots, 100\}
$$

- Set builder
ascribe zrbitrang element of the set, x

$$
A=\{x \mid \quad 1 \leq x \leq 100\}
$$

is such that
need to specify the unirese!
logic i.
(2 sic!

$$
A=\{x \mid x \in \mathbb{N} \cap 1 \leqslant x \leqslant 100\}
$$

\rightarrow natural numbers

$$
\begin{align*}
& \mathbb{N}=\{0,1,2,3, \ldots\} \\
& Z=\{\ldots,-2,-1,0,1,2, \ldots\} \\
& Z^{+}=\{1,2,3,4, \ldots\}
\end{align*}
$$

universe set: M (another way of defining the universe)

$$
\begin{aligned}
& M=\{x \in z \mid 0<x<100\} \\
& B=\{x \mid 2 x \in M \wedge x \div 2 \in z\} \\
& \Longrightarrow \text { no wo }
\end{aligned}
$$

$\frac{\text { nom }}{18}$	$\frac{\text { inset B? }}{\text { yes }}$		
7	no	$x \div 2 \in z$	F
52	no	$2 k \in \mu$	F
2	yes		
0	no	$2 x \in \mu$	F

3. Set operations

G just like logical operators input: sect (s)
Union (or) U output: set (s)

$$
A \cup B=\{x \mid x \in A \quad \vee \quad x \in B\}
$$

(venn diagram)
intersection (and) \cap

$$
A \cap B=\{x \mid x \in A \cap x \in B\}
$$

Complement (not) $\bar{A} A^{c}$

$$
\bar{A}=\{x \mid x \notin A\}
$$

(need to know universal set)

$$
A=\{2,4,6,8\}
$$

wo universe... things in \bar{A}

$$
M=\{1,2,3, \ldots, 10\} \quad A^{\prime}=\{1,3,5,7,9,10\}
$$

\bar{A} in universal Set but mot in A
ore we newt.

Helpful shortcuts! \downarrow
Difference: $\quad A-B=\{x \mid x \in A \wedge x \notin B\}$

$A-B \quad \ldots A \cap \bar{B}$

Symmetric Difference: $A \triangle B$

in A or B but not both (like xOR! (1) D

Set operation

Draw the Venn Diagram (can we simplify?)

$$
(A \cap B)-B
$$

$$
(A \cap B)-B=\{ \}
$$

\{\} ~ e m p t y ~ s e t ~
ϕ emplyset
$\{\phi\}$ user that contains the empty set

$$
\begin{aligned}
& E S P B \quad \text { EE } \\
& T T P \\
& T B F \\
& T E T \\
& T F F
\end{aligned}
$$

