## CS1800 Day 14

Admin:

- exam results
- tuning up your study process in CS1800
- HW4 results by thursday (hopefully tomorrow)
- grade estimates by Friday (hopefully Thursday)

Content:
Joint Probability Distribution
Marginalization
Conditional Probability
Bayes Rule
Independence

Joint Probability Distribution: A distribution over more than 1 variable at a time

Let $A=1$ indicate if a penguin is an adult ( 0 otherwise)
Let $\mathrm{F}=1$ indicate if a penguin has big flippers ( 0 otherwise)


$$
\begin{aligned}
& f=0 f=1
\end{aligned}
$$

Half of Penguins Are ADults w/ Bib fullers

Notation
$P(A=0, F=1)$ is Pros
$A=0 \quad$ (Nor ADOLT)
$F=1$ (BIG FLIPPER)
Happen At same time

$$
\begin{aligned}
& \text { Maronacizino (remonme a } \\
& \text { Ranoom Jariasle } \\
& \text { From Probs Distramotion) } \\
& \text { (x) } \\
& \text { (4) } \\
& \text { (x) } P(\beta=1)=\frac{2}{5}
\end{aligned}
$$

$$
\begin{aligned}
& P(B=1)=P(B=1 C=1)+P(B=1 C=0) \\
& =1 / 5+1 / 5=2 / 5
\end{aligned}
$$

Remember: To compute $P(B)$ we can sum $P(B, A)$ for all outcomes in sample space of $A$

$$
P(B=b)=\sum_{a} P(b=b A=a)
$$

Let $C$ be a random variable representing penguin color (sample space: blue, red or green) Let $A=1$ indicate if a penguin is an adult ( 0 otherwise) Given the following distribution of $A, C$

Compute each of the follow probabilities:

$$
\begin{aligned}
& P(C=\text { blue }) 3 / 12=1 / 12+2 / 12 \\
& P(C=\text { red })+P(C=\text { green })
\end{aligned}
$$

$\mathrm{P}(\mathrm{C}=\mathrm{red})+\mathrm{P}(\mathrm{C}=$ green $)$
(how is this related to prob above?) $P(A=1)$


$$
\begin{aligned}
P(C=B \omega E) & =P(C=B L E A=0)-P(C=B L E A=1) \\
& =1 / 10+3 / 12
\end{aligned}
$$

Conditional Probability (intuition \& motivation)
$\mathrm{C}=1$ indicates a person has covid ( $\mathrm{C}=0$ otherwise)
$\mathrm{T}=1$ indicates a person has positive test ( $\mathrm{T}=0$ otherwise)
Let us discuss (and express) the following probabilities:

- probability person has a positive test $P(T=1)$
- probability person has positive test given they have covid
- probability person has covid given a positive test


Intuition:
Conditional probability $\mathrm{P}(\mathrm{X}=\mathrm{x} \mid \mathrm{Y}=\mathrm{y})$ is the probability of event $\mathrm{X}=\mathrm{x}$ if we constrain ourselves to a world where $Y=y$.

Conditional Probability (motivating our formula from intuition)
$\mathrm{C}=1$ indicates a person has covid ( $\mathrm{C}=0$ otherwise)
$\mathrm{T}=1$ indicates a person has positive test ( $\mathrm{T}=0$ otherwise)
Let us discuss (and express) the following probabilities:


- probability person has a positive test $P(T=1)=P(T=1 C=1)+P(T=1 C=0)$
- probability person has positive test given they have covid $\quad q+5=14 \%$
- probability person has covid given a positive test $P(T=1 \backslash c=1)=\frac{9 \%}{9 \%+1 \%}=90 \%$

Intuition:

$$
P(c=1 \mid T=1)=9 \%
$$

 a world where $Y=y$.
$\rightarrow$ Prob ab mapped together

$$
P(a \mid b)=\frac{P(a b)}{P(b)}
$$

Prob a Happens Given contortion b

## In Class Activity

Compute each of the probabilitie from the distribution below. For each, write a sentence explaining its meaning which is easily understood by a non-technical reader

Let $S$ be a twitter sentiment score about bitcoin ( $1=$ good, $0=$ neutral, $-1=b a d$ ) Let B be the movement of bitcoin price ( $1=$ up, $-1=$ down)
$P(S=-1, B=1)$
$P(S=-1 \mid B=1) \ldots$ compare to $P(S=-1)$
$P(B=1 \mid S=-1) \ldots$ compare to $P(B=1)$

(


$$
\begin{aligned}
& =\frac{8}{49}=16 \% \\
& \begin{aligned}
P(s=-1) & =19+8 \\
& =27 \%
\end{aligned}
\end{aligned}
$$

Conditional Probability (formula version 2: often more useful in our algebraic manipulations)

$$
\left.P(a \cdot b)=\frac{P(a \mathrm{~b})}{P(b)} \rightarrow P(a) b\right) P(b)=P(a)
$$

BAHES RULE (GCoarteo conortanal Probablery)
See previous slide

$$
\begin{aligned}
& P(a \mid b) P(b)=P(a b)=P(b \mid a) P(a) \\
& \Rightarrow P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
\end{aligned}
$$

Notice: this formula "swaps" the order of the conditioning: $P(A \mid B)$ on left $P(B \mid A)$ on right Its typical in a Bayes question to be given variables in one order while question asks for other.

A Helpful manipulation

$$
P(b) \stackrel{b}{=} \sum_{a}^{\operatorname{MAROWALIZATION}} P(a b)
$$

conditional Prob Definition

$$
\stackrel{f}{=} \sum_{a} P(b \mid a) P(a)
$$

Why was that helpful?

$$
P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}\left\{\begin{array}{c}
\text { BayEs RuLe } 2 \\
P(a \mid b)=\frac{P(b \mid a) P(a)}{\sum_{i} P(b \mid a i) P(a i)} \\
\begin{array}{l}
\text { Notice: } \\
\text { all terms of form } P(b \mid a) \text { and } P(a) \text { here }
\end{array}
\end{array}\right.
$$



USEfuL BAYES stuff
(1) Bayes Rule:

$$
P(a \mid b)=\frac{P(b \mid a) P(0)}{P(b)}
$$

(2) Maronalization


$$
\begin{aligned}
P(\xi)=P\left(\varepsilon A_{0}\right)+ \\
P\left(\xi A_{0}\right)+
\end{aligned}
$$

(3) conditional Probs

$$
P(a \mid b) P(b)=P(a b)
$$

In Class Assignment
A blind spot monitor produces a warning light ( $L=1$ ) when it estimates that a car is in one's blind (Assume that a car is in the light is off, whats the probability that a car is one's blind spot?


$$
\begin{aligned}
P(B=1 \mid L=0) & =\frac{P(L=0 \mid B=1) P(B=1)}{P(L L 0)} \\
& =\frac{1.00}{}=.00205 \\
P(L=0) & =P(L=0 B=0=0)+P(L=0 B=1) \\
& =P(L=0 \mid B=0) P((=00)+P(L=0 \mid B=1) \\
& =.99 .98+1.00 P(B=1) \\
& =.972 \partial^{90}
\end{aligned}
$$

ALGEBRA + INTUITION

LONE STORY A mead...


INDEPENDENCE + CONDITIONAL PROB
INDEPENDENCE
INTUITION:
Random variables $x$, $y$ are independent if observing any outcome of one doesn't impact our beliefs about the other.

Alocibra:
For each outcome $P_{\text {air }} x, y$

$$
P(X=x y=y)=P(x-x) P(y=y)
$$

Bayes Rule shows the equivilence of the algebraic and intuitive definitions above!

INDEDENDENCE + CONDitional PROB
independence
intuItion:
Random variables $x$, $y$ are independent if observing any outcome of one doesn't
impact our beliefs about the
impact our beliefs about the other.

Alozbra:
For each outcome Parr $x, y$ $P(x=x y=y) ; P(x=x) P(y=y)$

$$
P(x \mid y)=\frac{P(x y)}{P(y)}=\frac{P(x) P(y)}{P(y)}=P(x)
$$

Notice that $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})=\mathrm{P}(\mathrm{X})$. Observing Y has no impact on the prob of X !

