CSI 800

$$
11 / 10-F_{n} \because
$$

Aamin

- Hw6 ave toany 11:59
- Hw7 out, are 1117 (78 pts)
- Exam\#2 N117
aAm-lepm
Thar window remote
ruiew in leas recitation nest wack

Agenda

1. Inauction overvicu
2. Example-mathy (inequality)
3. Examples - ituretural (graphs, sets)
l. Induction ovenilew

- our "main" proof technique in csis00
- used zee the time (alg, s/w engneering)

When to use...
Predicate $P(n)$
we could:

$P(1)$	$P(4)$	
$P(2)$	$P(5)$	
$P(3)$	$P(6)$	\ldots

Induction Shoran:

- Bare case $P(1) \rightarrow$ Specific rave ${ }^{2}$ smallest value we car about
- Inductive step $P(k) \Rightarrow P(k+1)$
[LH) $P(k)$
use to show $P(k+1)$
k is zerbitrang
A couple math reminders:
- $(a+b)^{2}=a^{2}+2 b a+b^{2}$
- $(z+1)^{2}=z^{2}+2 z+1$
- $a^{-b}=\frac{1}{a^{b}}$
- $2^{b} \cdot 2^{c}=2^{b+c}$
- $\left(a^{b}\right)^{c}=2^{b c}$
- $n!=(n)(n-1)(n-2) \ldots$ (1) by aet
- $\sum_{i=1}^{n} i=1+2+3+\ldots+n \quad$ by def

2. Induction Example - Inequality

- Growth of functions (lur in semester)
- ex: $3^{n}<n!$
3^{n} grows mere slowly than n!

Pred: P(n) $3^{n}<n!$
Logic: $\forall n \in Z \quad n \geq 7 \Rightarrow P(n)$
Base lase: $\quad P(7)$

$$
\begin{gathered}
3^{7}<7! \\
2187<5040
\end{gathered}
$$

Sane!

Inductive step $P(k) \Rightarrow P(k+1)$

$$
P(k) \quad 3^{k}<k!\quad I H
$$

Goal:
$\underbrace{P(k+1)} \underbrace{3^{k+1}<(k+1)!}$

- one step at 2 time:
- only do toe tunes

$$
\begin{aligned}
3^{k+1} & =3^{k} \cdot 3^{1} \\
& <(k!) \cdot 3 \quad \text { by IH } \\
& <(k!) \stackrel{(k+1)}{\rightarrow} \text { bagger than } 3 \\
& =(k+1)!
\end{aligned}
$$

2. Induction Examples - graph \geqslant sets

- be dezar zbout what indectien is on
- \#eages
- Hvertirs
- \# elements in set
- ...
$P(n)$ 'S\# ya chuse
- Inductive step: beffer to start at $k+1$ and remal something
(ex) graph example (simpu) \# veticus

2

$$
2 \quad 4
$$

4

$$
3
$$

$$
6
$$

4
4

4
4 8

$2 x$ \#edges

reld an edge, zeld 2 mare fotre degrees

Induction on \#eages
$P(n)$ a graph with n edges has totae agree $2 n$

$$
\forall n \in Z^{+} \quad P(n)
$$

Bage lase: $P(i)$
grap w / are eage by det, each verex has degree ore totae agrae $=2$

Inductive Step - $P(k) \Rightarrow P(k+1)$
$P(k)$ a graph with k IH edges has degree $2 k$

Grph with bel eages

(not reze)
total degree: unknann
Remare un eage
Graphwith kecleg> (notreal)

Aad missing edge buck in

- zaded edge (u, v)
- Grph withk+1 edges
- zaded cre degree for U
- zaded cre degrae EOr V

$$
\text { totze aegrae }=2 k+2
$$

$$
=2(k+1) \text { dencia }
$$

(ex) Induction on a set

- Subsets of size 2

$$
\begin{equation*}
A=\{a, b\} \tag{1}
\end{equation*}
$$

Subsots of A wlezdimerity 2: $\{a, b\}$

$$
\begin{equation*}
A=\{a, b, c\} \tag{3}
\end{equation*}
$$

Sloxets of A w/ condmeing 2: $\{\pi, b\},\{a, c\},\{b, c\}$

$$
\begin{equation*}
A=\{a, b, c, d\} \tag{6}
\end{equation*}
$$

Susocts of Aul condemaling 2: $\{2, b\},\{a, c\},\{6, c\}$,

AA	Habsels
2	1
3	3
4	6

$$
\begin{array}{lll}
p(2) & \frac{2 \cdot 1}{2}=1 & p(4) \\
p(3) & \frac{3 \cdot 2}{2}=3 & \frac{4 \cdot 3}{2}=6
\end{array}
$$

$P(n)$ setwith kenumality n has $\frac{\ln (n-1)}{2}$ Subsuts of size 2

$$
\forall n \in Z n \geq 2 \quad \Rightarrow P(n)
$$

Bare lase $P(2) \quad A=\left\{x_{1}, z_{2}\right\}$
has cractly man
Sbat ot sre 2,4

Inductive Step $P(k) \Rightarrow P(r+1)$
TH $|A|=k$, then $\#$ absets
$P(k) \quad$ of size 2 is $\frac{(k)(k-1)}{2}$

Let A be a set with $|A|=t+1$

$$
\left\{a_{1}, a_{2}, z_{z_{3}}, \ldots, a_{k+1}\right\}
$$

- remare ane element from A
- $A^{\prime}=A-\left\{a_{1}\right\}$

$$
\left|A^{\prime}\right|=k
$$

$$
=\left\{z_{2}, x_{3}, z_{4}, \ldots, z_{t H}\right\}
$$

- Isubsets of size 2 in A^{\prime} is

- add ac buck in
now ar set bras codinality $k+1$
- a_{1} gets paired with every existing Clement to create a shbset of size 2
totre \# sibsuts of size 2:
$\frac{(k)(k-i)}{2}+k$
IH
\rightarrow everuthing an gets paired with
oldabsats t nee sbouts

$$
\begin{aligned}
\frac{(k S(k-1)}{2}+k & =\frac{(k)(k-1)}{2}+\frac{2 k}{2} \\
& =\frac{(k)(k-1)+2 k}{2} \\
& =\frac{k^{2}-k+2 k}{2} \\
& =\frac{k^{2+k}}{2} \\
& =\frac{(k+1)(k)}{2} \text { amel. }
\end{aligned}
$$

