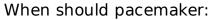
CS 1800 Day 4

Admin:

- hw1 due Friday
- please read the HW instructions (group members, tagging pages etc)
- tutoring group update (they've been formed, a few missing TAs, we'll be in touch ASAP, if you'd like to join one please see instructions on site)

Content:

- logic statements & predicates
- truth tables
- logic operators (AND, NOT, OR)
- (just an intro to these topics, we'll do more next lesson too)
- existential / universal quantifier
- conditionals


When should machine:

- give a soda
- return change

When should sunroof:

- open
- close

- send pulse to muscle to pump blood?
- shock to restart heart

Logic gives us an unambiguous language to describe behavior

(spoken languages, like english, can be ambiguous)

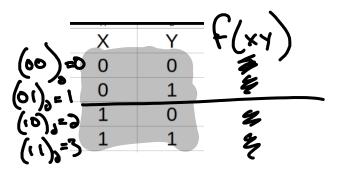
STATEMENTS

Statement - a sentence which is either true or false

Which of the following are statements?

- 1. Today is Sept 19
- 2. "This big wooden horse definitely doesn't have greek soldiers inside"
 - Greeks who just put soldiers in that horse
- 3. What is your favorite color?
- 4. There is intelligent life on mars

PREDICATES


Predicate - a statement about one or more variables (i.e. mad libs)

CONVENTION: BITS AND BOOLEANS

O= FALSE |= TRUE

We'll often describe a function of one or more inputs (e.g. vending machine operation)

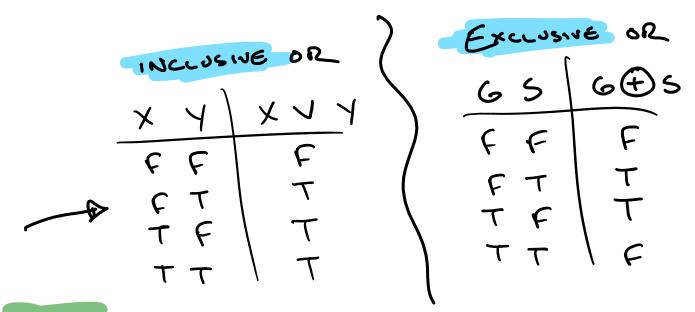
A Truth Table specifies an output associated with every possible combinations of inputs

, \			
a(xyz)	Z	Υ	Χ
Z	0	0	0
*	0	1	0
Y	0	0	1
4	0	1	1
*	1	0	0
*	1	1	0
٤	1	0	1
•	1	1	1
6			

COGICAL OPERATOR: NOT (NEGATION)

> CHANGES TRUTH VALUE

X= "IT'S RAINING


TX= "IT'S NOT PAINING"

LOGICAL OPERATOR: AND (CONSUNCTIVE) ONLY TRUE WHEN ALL INPUTS ARE TRUE F DP DNP "X AND Y" D= Drivery LicensE Presenter P = PAYSPORT PRESENTED ONP = DRIVER'S CICEUSE AND
PASSPORT PRESENTED

LOGICAL OPERATOR: OR (DISJUNCTIVE OPERATOR) ONLY TRUE WHEN ANY INPUT IS TRUE D= Drivery LICENSE Presenten P = PASSPORT PRESENTED OUP = DRIVER'S CREWSE OR PASSPORT PRESENTED

Exclosive OR: XOR

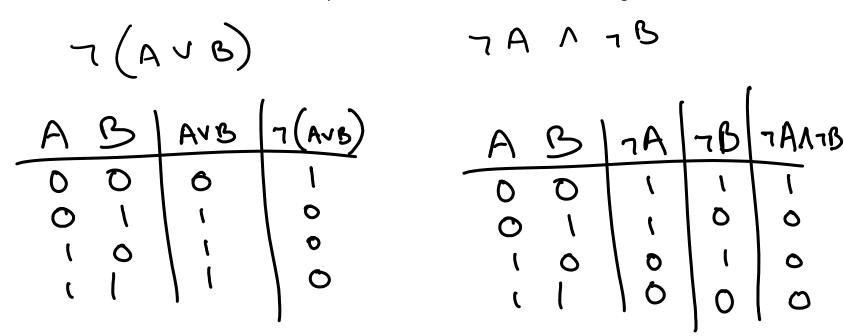
WHEN EXACTLY ONE INPUT "WILL YOU HAVE GREENS OR SOUP?" G= YOU HAVE GREEN > 65 605 S = YOU HAVE SOUP = "ETHER SOUP NOT BOTH" DIFFERENCE FROM OR

"Convention": Most of the time when folks say "or" they intend the inclusive or

but not all the time ... good luck! ;)

CONVENTION

Assume the negation operation applies to statement immediately to its right.


If the negation applies to multiple statements, use parenthases as below:

Truth tables allow us to build complex expressions in bite-size steps.

oal:	Truth	TABLE	. For (x	V (hr	72
X	Y	Z	XVY	72	(xux) 17Z
0	0	(0)	Ō		/0
0	1	0			(
1	0	0		i	1
1	1	0	1		l
0	0	1	ð	0	0
0	1	1	ſ	0	O
1	0	1	(0	0
1	1	1	J	0	Q

In Class Assignment:

Build a truth table for each of the two expressions below. Results for both might feel familiar, thats ok :)

COURCE (BOOKEAN) EQUIVILENCE

Two statements are logically equivalent if their truth table columns are identical.

Statements which are logically equivalent:

- always have the same truth value (True or False)
- may be substituted for each other
 - like one does in our familiar algebra (e.g. x = 3 into 10 = x + y)

Example: logically equivalent statements:

"This shape has exactly four sides of equal length at right angles to each other"

"This shape is a square"

$$3(2+5) = 3.2 + 3.5$$

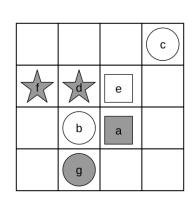
	Associative Laws
	$(P \lor Q) \lor R = P \lor (Q \lor R)$
	$(P \land Q) \land R = P \land (Q \land R)$
There are other laws too:	Double Negation
	¬ ¬ P = P
- helpful to simplify an expression	
	DeMorgan's Laws
	$\neg (P \lor Q) = \neg P \land \neg Q$
- we'll study these alongside set algebra & circuits, which are	$\neg(P \land Q) = \neg P \lor \neg Q$
related topics, more to come later	Distributive Laws
•	$P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R)$

 $P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$

Complement Laws $P \lor \neg P = T$ $P \wedge \neg P = F$ **Idempotent Laws** $P \vee P = P$ $P \wedge P = P$ Identity False \vee P = P True \wedge P = P

Domination:

True \lor P = True False \land P = False


Absorption Laws $P \land (P \lor Q) = P$ $P \lor (P \land Q) = P$

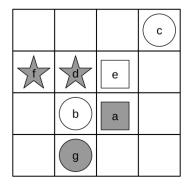
X= YOU JOIN TUTORING GROUP Conditional Statement: (AKA Implication) Y= YOU WILL HAVE FUN W/ MATH If X then Y X->Y = 1F YOU SOM TUTOR GROUP THEN YOU'LL HAVE FUN WIME A X=0. DIDN'T ZOIN GOODE X-DY TRUE BY CONTENTION STUDENT JOINED GROUP BOT DIDN'T HAVE FUN X-04 15 FALSE STUDENT JOINED GOOD AND HAD FUN X+Y IS TRUE

LOGICAL QUANTIFIER: UNIVERSAL AKA FOR ALL * SHADE (X) FOR EVERY OBJECT X X IS SHADED THIS STATEMENT IS FALSE, CONSIDER THAT C IS NOT SHADED - DOW ALENT ALL, ANY, EACH, EVERY

QUILK PRACTICE

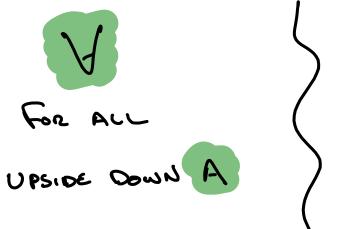
15 FOLLOWING STATEMENT TRUE?

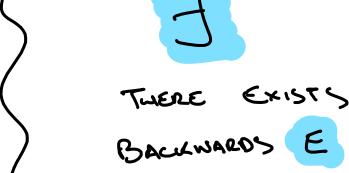
FOR ALL X THAT IS A STAR,
IT IS SHADED


FOR ALL X IF X IS ASTAR THEN

X IS SHADED

LOGICAL QUANTIFIER: EXISTENTIAL (AKA "THERE EXISTS")





THERE EXISTS SHAPE X WITH X IS SHADED THIS STATEMENT IS TRUE CONSIDER THAT Q 15 SHADED

USEFUL TIP

In Class Activity:

Using logical operators (AND, OR, NOT) quantifiers (for all, there exists) and conditionals (if-then), translate each statement below:

Logic to english:

There exists a student, x, where either x is wearing shoes or is

SHOES (x) = STUDENT X
WEARING
SHOES

DANCE(x) = STUDENT X

15 A GREAT

for all students, if they're a great dancer then they're not wearing shoes

English to logic (define your own statements & predicates as needed)

- You shall not pass! - Gandalf

Passes

Passes

Passes

- "Everybody loves you when you're 6 feet under

- "Everybody loves you when you're 6 feet underground" -John Lennon

YXY -ALIVE(X) - LOVE(Y,X)

LOVE (xy) = xALIVE (x) = x is

W= 1 HAVE WALLET . N - I've got a wallet, keys and a phone in my pocket. MY POCKET K= 1 HAVE KERS IN WAKAP - I never leave the house without my blue shoes or a hat Q = VBEI HAVE BLUE SHOES ON H=1 HAVE HAT ON LEI LEAVE HOUSE 7(BUH) -> 7[

- "There's no place like home" - Dorothy in Wizard of Oz