Cs 1800 9/19-Tues

Admin

- Hor are Fri 1:59
- OH onlive/inperson
- notes on website
- live $Q+A$ un piazza

Agenda

1. Logic statements + operators
2. Truth table
3. Implications (aka "conditionals")
4. Logic Statements

decimal \longleftrightarrow binary
$\underset{(N L P)}{\text { Sentervs }} \longleftrightarrow$ logic statements

$$
\begin{aligned}
& \text { Squishy } \\
& \text { ambiguous }
\end{aligned}
$$

direct
pare un ambiguas reason ane meaning

- computers have 0/1

$$
\rightarrow \text { Fzlse/tive }
$$

- logic statement
- declarative
- has a troth valve $(T \mid F)$
- usually beecher P, Q, R, \ldots
ex
- There is life on mars
- $4+2=6$
- $x+2=6$
$\frac{\text { dec } 1 \text { ? }}{V} \quad \frac{\text { thoth vas? }}{V}$
v

$$
\checkmark
$$

- Bastonians lave anking
- when is Ho ave?

\rightarrow simple statements
- ore turing
- one troth valve

Com paid statement - mare common

- compare one or mare simple statements
- use logical operators 1.,
\rightarrow not, and, or
all that's needed!
ex's with operators
$P=-2 \leq-2(T \rightarrow$ logic statement
negation/ not
$7 P$ is the negation of P
Is P and $2 P$ have complementray thoth values

$$
\neg p=-2>-2
$$

And

$P=$ Lancy is an Aries
$Q=$ Lancy is a Htorse
$P \wedge Q$

- P tras a tuth valve
- Q tras a truth velve
- $P \wedge Q$ has a truth valve
ζ Calse when P, Q, or both are False othemise Twe
or V
$P=$ Kayla \& cooper
$Q=K_{\text {hyla }}$ O sarge
$P \vee Q$
- P has a fath rave
- Q has a truth value
- Pva has a tutu valve
\leftrightarrows Tue when P, Q, or both are The

False othonise
2. Truth tables

- specify valve of a compand statement, when it depends an valvesof simple statements
- also: mini proof to shaw 2 company state mints zee equivalent
- one column = one step
- Start with inputs of simple statements
negation

$$
\begin{aligned}
& \frac{P}{T} \\
& \frac{F P}{F} \\
& \frac{T}{\text { input }}
\end{aligned}
$$

and

$$
\operatorname{inpts}^{\text {and }}\left[\begin{array}{ccc}
\frac{P}{T} & \frac{Q}{T} & \frac{P \wedge Q}{T} \\
T & F & F \\
F & T & F \\
F & F
\end{array}\right.
$$

or
$\begin{array}{ccc}\frac{P}{T} & \frac{Q}{T} & \frac{P \vee Q}{T} \\ T & F & T \\ F & T & T \\ F & F & F\end{array}$

- Compana statements trove same truth salves

3. Implications (conditioners)

- and /or not are the only logical apeanters we need
- other operators exist for convenience!

$$
P \Rightarrow Q \quad \begin{array}{ll}
P \text { implies } Q \\
\text { if } P \text {, then } Q
\end{array}
$$

- $\begin{gathered}0 \\ \lambda\end{gathered}$
l respect the crigiral statement
English statement:
If Aces win championship, lane gets $\$$
$P=$ Aces win champs

$$
P \Rightarrow Q
$$

$Q=$ liny gets $\$$

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	F	T
F	F	T

English Statement:
we get cake if it's my birth dy
$P=$ we get cake
$Q=$ It's my birthday

P	Q	Q	
T	T	T	
T	F	T	
F	T	F	
F	F	T	

cuke body $P \Rightarrow Q$

$$
1
$$

