Please be sure not to leave a seat open between you all (it will ensure we all get a seat)
thank you!

Welcome!

### CS1800 Day 2

#### Admin:

- Recitation & Recitation Quiz
- Sign up for piazza please (its a great place for student questions :) )

#### Content:

Converting Between Bases:

- subtract-largest-power-of-base method (intuitive)
- euclid's division method (easier ... we'll see later they're the same)

Operating (adding & subtracting) in other bases

Modular Arithmetic:

# In Class Activity (warm-up):

Convert each of the following back to decimal (base-10):

CONVERTING BETWEEN BASES DONE V Some other DECIMAL (BASE - 10) BASE We'll do this Next

DECIMAL TO ANOTHER BASEN SUBTRACT LARGEST POUER Solve For X 14 = (x) 9,=8 14=8+4+2 24=16 (, 1110)9

Divide one number by another, round down to nearest whole number

$$-7/|4 = -2$$

17 DIVIDED BY 8 17 = 8.2 + 1 1 REMAINDER 17/18

DECIMAL TO ANOTHER BASE: Eucho's Division METHOD Soure For 14=7.2+0  $14 = (x)_{3}$ 

(1110)2

$$37 = 13.3 + 1$$
 $13 = 6.3 + 1$ 
 $6 = 3.3 + 0$ 

3=1.2+1

27= (11011) a

# DECIMAL TO ANOTHER BASE: EUCLID'S DIVISION METHOD

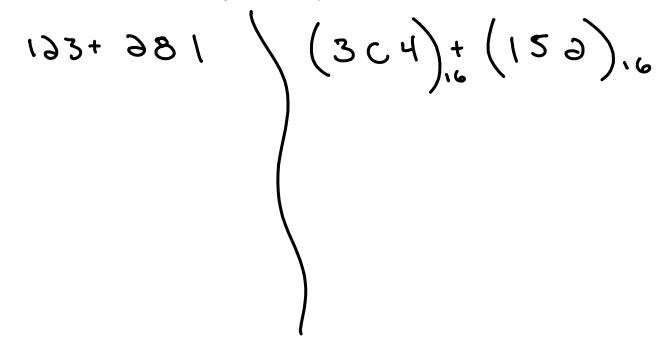
$$(x)_{3}$$
  $7=7.5$   $7=3.3$ 

- 1. Given decimal value is first value
- 2. Divide value by base w/ whole numbers (use a remainder)
- 3 Set new value as base-multiplier
- 4. Repeat from step 2 if value is greater or equal to base
- 5. Glue together all remainders (last-to-first) to produce answer

## In Class Activity

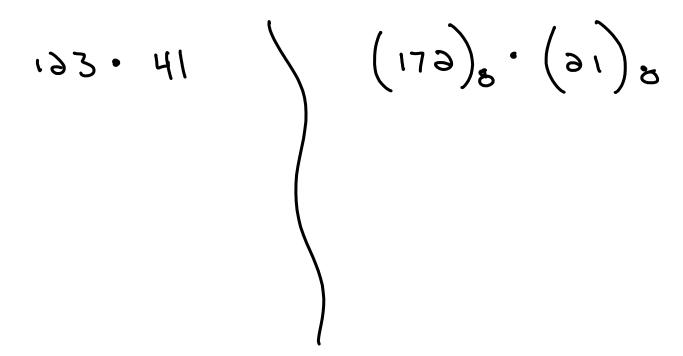
### Express 23 as a binary value using:

- subtract-largest-power-of-base
- Euclid's division method


(++) How are these methods similar? How are they different? How might you demonstrate that Euclid's divisoin method gives the correct answer?

| (works just like decimal, though it might feels funny at first) |  |
|-----------------------------------------------------------------|--|
|                                                                 |  |

Operating (adding & multiplying) in another base


# Operating in other bases: addition

Perform each of the following addition operations:



# Operating in other bases: multiplication

Perform each of the following multiplication operations:



| Operating in other bases (tips): |  |
|----------------------------------|--|
|                                  |  |

- use scratch work on the side (in decimal, to be comfortable)

- don't use base-10 values in original problem (convert to given base!)

If you get stuck, make up and write out a similar decimal example, it will prime your brain to make the same moves in the strange, alien base

# In Class Activity

Perform each of the following operations in the given base:

$$(147)_{8} + (44)_{8}$$
  $(38)_{4} \cdot (28)_{4}$ 

Modular Arithmetic: Motivation via wall-clock time

#### If the time now is 4 PM:


- what time is it in 1 hour?
- what time is it in 25 = 1 + 24 \* 1 hours?
- what time is it in 49 = 1 + 24 \* 2 hours?
- what time is it in 73 = 1 + 24 \* 3 hours?
- what time is it in 1 + 24 \* n hours (for a whole number n)?

#### Punchline:

When counting time, values are equivilent if they differ by a factor of 24 (e.g. 24, 48, 72 etc)

### Modulo Operator: inuition

What are "all" the values which add 1 hour to the time?



Lets represent this set by its smallest, non-negative value:

$$-47 \mod 24 = 1$$

$$-23 \mod 24 = 1$$
 $1 \mod 24 = 1$ 

$$25 \mod 24 = 1$$

Modulo Operator: definition

"x mod n" equals the smallest, non-negative value r where x = c \* n + r where c is a whole number

Example:

$$14 \mod 2 = ?$$

Thinking out loud:

- Dividing 14 by 2 gives a remainder zero. 
$$14 = 7.3 + 0$$

- What are all the values x which also have x divided by 2 gives remainder zero?

- Which of these is the smallest, non-negative value?

| Compute each of the following:            |
|-------------------------------------------|
| 45 mod 2                                  |
| 11 mod 7                                  |
| -4 mod 2                                  |
| "any decimal number ending in zero" mod 0 |
|                                           |

In Class Activity