Welcome!
Please don't leave any seats empty between you all (we might need the room)
thanks!

CS1800 Day 2

Admin:

- Recitation \& Recitation Quiz
- Sign up for piazza please (its a great place for student questions :))

Content:
Converting Between Bases:

- subtract-largest-power-of-base method (intuitive)
- euclid's division method (easier ... we'll see later they're the same)

Operating (adding \& subtracting) in other bases
Modular Arithmetic:

In Class Activity (warm-up):

Convert each of the following back to decimal (base-10):

$$
8+0+2+1=11
$$

$$
\begin{array}{rl}
& (123)_{4} \\
4^{4^{2}} 4^{0} \\
164 & 1 \\
\begin{array}{|l|l|}
1 \mid 2 & 3
\end{array} \\
\hline
\end{array}
$$

Converting Between Bases

Decimal to Another Base i Subtract largest
Solve for x

$$
\sum_{B=\partial}^{P^{0}=1}
$$

$$
\begin{aligned}
14=(x)_{2} & =8+6 \\
& =8+4+2 \\
& =(1110)_{2}
\end{aligned}
$$

$$
\partial^{\prime}=\partial
$$

$$
\partial^{2}=4
$$

$$
2^{3}=8
$$

8	4	2	1
1	1	1	0

$$
2^{4}=16
$$

Decimal to Another Base: Euclio's Division Method Solve for X

$$
14=(x)_{a} \quad \begin{aligned}
14 & =7 \cdot 2+0 \\
7 & =3 \cdot 2+1 \\
3 & =1 \cdot 2+1 \\
1 & =0 \cdot 2+1 \\
(1110)_{2} &
\end{aligned}
$$

Decimal To Anomer Base: Euclid's Division Method

$$
\begin{aligned}
& \text { Sown for } X \\
& 14=(x)_{2} \quad 14=7 \cdot 2+0 \\
& 7=3 \cdot a+1 \\
& 3=1 \cdot a+1 \\
& 1=0 \cdot \partial+1 \text { Sol Her } \\
& (1110)_{a}
\end{aligned}
$$

$V_{\text {aline }}=$ MuGTPLiER.Base $+R$ emander

$$
\begin{array}{rlrl}
18 & =(x)_{2} & 18 & =9 \cdot 2+0 \\
& =(10010)_{2} & 9 & =4 \cdot 2+1 \\
& & 4 & =2 \cdot 2+0 \\
& 2 & =1 \cdot 2+0 \\
& 1 & =0 \cdot 2+1
\end{array}
$$

Remainder will always be less THAN BASE

In Class Activity

Express 23 as a binary value using:

- subtract-largest-power-of-base
- Euclid's division method
(++) How are these methods similar? How are they different? How might you demonstrate that Euclid's divisoin method gives the correct answer?
∂Z TO BINARY (PowER of base in Remanded)

Euclid

$$
\begin{aligned}
\partial 3 & =16+7 \\
& =16+4+3 \\
& =16+4+2+1 \\
& =\left(\begin{array}{llll}
10 & 1 & 1
\end{array}\right)_{2}
\end{aligned}
$$

$$
\begin{array}{r}
\partial 3=11 \cdot \partial+1 \\
11=5 \cdot \partial+1 \\
5=\partial \cdot \partial+1 \\
2=1 \cdot \partial+0 \\
1=0 \cdot 2+1 \\
(10111)_{2}
\end{array}
$$

Operating (adding \& multiplying) in another base
(works just like decimal, though it might feels funny at first)

Operating in other bases: addition
Perform each of the following addition operations:

Operating in other bases: multiplication
Perform each of the following multiplication operations:

$$
\begin{aligned}
& 11=8+3 \\
& =(13)_{8}
\end{aligned}
$$

$$
\begin{aligned}
11 & =8+3 \\
& =1 \cdot 8+3 \cdot 1
\end{aligned}
$$

$$
\begin{gathered}
1 \\
8 \\
64
\end{gathered}
$$

Operating in other bases (tips):

- use scratch work on the side (in decimal, to be comfortable)
- don't use base-10 values in original problem (convert to given base!)

If you get stuck, make up and write out a similar decimal example, it will prime your brain to make the same moves in the strange, alien base

In Class Activity
erform each of the following operations in the given base

$$
\left.(147)_{8}+(44)_{8}\right\} \quad(32)_{4} \cdot(22)_{4}
$$

$$
\begin{array}{lr}
(147)_{8}+(44)_{8} & 147 \\
7+4=11=8+3=(13)_{8} & +\quad 44 \\
1+4+4=9=8+1=(11)_{8} & 213 \\
1+1
\end{array}
$$

$$
\begin{array}{ll}
(3 \partial)_{4} \cdot(\partial \partial)_{4}
\end{array} \quad \begin{array}{r}
132 \\
\times 2 \partial \\
\hline 2 \cdot 2=4=(10)_{4} \\
1+3 \cdot 2=7=4+3=(13)_{4}
\end{array} \quad \begin{aligned}
& 1300 \\
& \hline 2030
\end{aligned}
$$

$$
(11)_{14}
$$

Modular Arithmetic: Motivation via wall-clock time

If the time now is 4 PM :

- what time is it in 1 hour?
- what time is it in $25=1+24 * 1$ hours?
- what time is it in $49=1+24 * 2$ hours?
- what time is it in $73=1+24 * 3$ hours?
- what time is it in $\quad 1+24 * n$ hours (for a whole number n)?

Punchline:
When counting time, values are equivilent if they differ by a factor of 24 (e.g. 24, 48, 72 etc)

Modulo Operator: inuition
What are "all" the values which add 1 hour to the time?

Lets represent this set by its smallest, non-negative value:

$$
\begin{aligned}
& -47 \bmod 24=1 \\
& -23 \bmod 24=1 \\
& 1 \bmod 24=1 \\
& 25 \bmod 24=1 \\
& 49 \bmod 24=1 \\
& 73 \bmod 24=1
\end{aligned}
$$

" $x \bmod n$ " equals the smallest, non-negative value r where $x=c * n+r$ where c is a whole number

Example:

$14 \bmod 2=?$

Thinking out loud:

- Dividing 14 by 2 gives a remainder zero. $14=7.2+0$
- What are all the values x which also have x divided by 2 gives remainder zero?
$\ldots,-6,-4,-2,0,2,4,6,8, \ldots$
- Which of these is the smallest, non-negative value?

14 MOD $2=0$

$$
11 \text { MOD } 2=13 \text { MOD } 2=15 \text { MOD } 2
$$

$$
11=5 \cdot 2+1
$$

$$
\begin{array}{lll}
11 \operatorname{MOD} 3=2 & 11=3 \cdot 3+2 \\
142 \operatorname{MOD} 10=2 & 142=14 \cdot 10+2 \\
36 \operatorname{MOD} 6=0 &
\end{array}
$$

"Any value"

$$
\text { ENDing in MOD } 10=0
$$

$$
Z \in R 0
$$

100

$$
\text { MOD } 3=1 \quad \begin{aligned}
& 100=33 \cdot 3+1 \\
& 100=32 \cdot 3+4
\end{aligned}
$$

