CSISO 9/15- Fix Admin · Hu1 out! are 9/22 11:59 pm · Rec1 quiz -> due 9/18 9pm · Tutoday -> look on piazza / we losite · Live QAA for guestions during lecture Agenda & >> K I r Repping signed rumbers 2. Anthmetic with signed numbers 3. modular anthmetic O. Summery from Ties. Sunsigned other base -> decimal (Euclid's aimsion) hecimal -> other buse

anthmetic (just like the decime)

1. Repping Signed Montser=

- · numbers are positive negative
- · reald ...
 - sometimes we need negative>
 - Compters do Sotraction with addition

· Same amont of space _ "vere life" 32 or 64 bits for every number

Staged with...

- · Sign and magnifie
- · designate a sign bit (lettmost)

· everything else the same

1 1 0 1 5

Today...(two's compenent)

· sign bit (lestmost)

0 = pos, 1 = neg

- · volve of the number is différent unen positive/regative
- · Aways have same # bits for each rumber
- · Addition zegonithm zeways the same
- · 2's comp is for both pos/neg

(# 10Hs must be known!)

	011	3
Five Sive	010	2
sign	001	1
	000	6
	[1]	-1
	110	-7
	101	-3
	100	-4

highest: 3 lowest: -4

Decimal	2'5	Com	plement
		,	

0	8	2	(ර	l
			_		

- 1. humber is positive
 - make leftmost bit zero
 - convert decimal > binary in used way
 - fill in missing bits with zenes
- 2. number is negative
 - pretend It's positive
 - Convert to point
 - flip the bits
 - add one
- · what it number is too big ?, ~ sorry is
 - know highest possible #
 - it result of Zadditton ... Guertlan

Ce bit two's complement ...

- unat's highest value I can rep?

le bit two's complement

2. Anthonetic With Signed Numbers

ر (اح) ان

TO THE STATE OF TH	A	nthmetic	in	twas	Complement
--	---	----------	----	------	------------

- normal binary addition (Same steps as decimal)
- always have same # bits
- It after 2ddition...
 - Lest most bit · we get an extra bit -> [Chap it off!
 - · 2 lter Chopping
 - -maybe the
 - maybe result is cazy)-
- overtlaw: value of result is too big small high pos law neg

(6 6h)

129-24 0 11 101 (79)+ 101000 (-24) -> too many bits! 10001 Chap off left

000 101

(5) (

- 24

(9) 001001

Aip 110110

Zdd

(-24)

(-9)

110111(9)

regs and got

101111

101000

+ 110111

5 chopped off

() result: 011111

positive

3 bit,

13. Moddar Anthrustic

- · Back to decimal
- · modulo is a mathematical greation

- useful in many prog. languages (%) mod }

Eudid for a minute...

n = p.g. + = semander (Ep)

1 > subtlent

ex) 16 = 5.3 + 1

· What is remainder for 16:52

16 mod 5 = 1

Real life

Credit (and #5 } validated when typed in product code #5 } that it's a valid num

V= b.8 +1

20 mod 6 =
$$\frac{7}{20} = \frac{6}{3} \cdot \frac{3}{3} \cdot \frac{3}{3}$$

15 mod 1 = 0 $\frac{5}{3} = \frac{5}{0} \cdot 0 + 3$
3 mod 5 = $\frac{3}{3} = \frac{5}{0} \cdot 0 + 3$
-11 mod 4 = 1 $\frac{-11}{3} = \frac{4}{3} \cdot \frac{-3}{3} + \frac{1}{3}$
-4 mod 7 = $\frac{3}{2} = \frac{7}{3} \cdot \frac{-1}{3} + \frac{3}{3}$
-2 mod 2 = 0 $\frac{7}{2} = \frac{2}{3} \cdot \frac{-1}{3} + \frac{3}{3}$