CS1800
Day 7
Admin:

- hw2 due today @ 11:59 PM

Content:

- Computer Representation of sets
- Negation (DeMorgan's Laws)
- set algebra \& logic algebra (very similar!)
- Logic (digital) circuits

Computer representation of sets:

How does a computer store the following sets?
$U=\{10,128,8358,12,0,-100\} \quad$ (the universal set, contains all items another set contains
$A=\{10, \quad 8358,12,0,-100\}$
$B=\{10, \quad 8358, \quad 0,-100\}$
$C=\{128$

Approach:

Step 1: Assign a natural number ($0,1,2,3 \ldots$) index (position) to all the items in universal set:

$$
u=\left\{\begin{array}{ccc}
0 & 128,8358, & 3, y, \\
12 & ,-100
\end{array}\right.
$$

Step 2: Represent a set as a bit string (sequence of bits). If bit 0 is 1, item 0 in set. If bit 1 is 0 , item 1 not in set.

Computer representation of sets: Why is the bit-string a good idea?

1. We need only store every item once, which is important if some of our items would take a lot of memory to store:

$$
\begin{aligned}
& A=\{901824918240192491283938\} \\
& B=\{901824918240192491283938,1\} \\
& C=\{901824918240192491283938,1,2\}
\end{aligned}
$$

2. Our set operation have a natural correspondance with logical operations:

$$
\text { Consider } \begin{aligned}
U & =\{\text { blue, yellow, red }\} \\
A & =\{\text { blue, yellow, }\} \\
B & =\{\text { blue, yellow, }\} \\
A \cup B & =\{\text { blue, }
\end{aligned}
$$

$$
\begin{aligned}
A & =100 \\
B & =010 \\
A \cup B & =110
\end{aligned}
$$

Many logical operations on bit string correspond to a set operation

Many logical operations on bit string correspond to a set operation

Goal: Suow $(A \cup B)^{C}=A^{C} \cap B^{C}$

$$
\begin{array}{rl}
(A \cup B)^{C} \subseteq A^{c} & \cap B^{C} \\
A \text { ssome } & \\
& x \in(A \cup B)^{C} \\
& x \notin A \cup B \\
& x \notin A \text { AND } x \notin B \\
& x \in A^{C} \text { AND } x \in B^{C} \\
& x \in A^{C} \cap B^{C} \\
\text { So } x \in(A \cup D)^{C} & x \in A^{C} \cap B^{C}
\end{array}
$$

$$
\begin{aligned}
& (A \cup B)^{c} \supseteq A^{C} \cap B^{c} \\
& \text { If } x \in A^{c} \cap B^{C} \\
& \operatorname{TUEN} x \in(A \cup B)^{C} \\
& \text { Assume } x \in A^{C} \cap B^{C} \\
& \rightarrow x \in A^{C} \quad \text { AND } \quad x \in B^{C} \\
& \rightarrow x \notin A \text { AND } x \notin B \\
& \rightarrow x \notin A \cup B \\
& \rightarrow \quad x \in(A \cup B)^{c}
\end{aligned}
$$

After all that work weive proved (one of) Demorgan's lan for sets

$$
(A \cup B)^{c}=A^{c} \cap B^{c}
$$

Feel familiar?

Feel Familiar yer?

In Class Assignment (not for today, this is complete from day 4's notes)
Build a truth table for each of the two expressions below. Results for both might feel familiar, that ok
$\left.\left.\begin{array}{l}7(A \cup B) \\ A \\ \hline B\end{array} \right\rvert\, A \vee B\right) 7(A \vee 0)$
$\neg A \wedge \neg B$

A	B	$7 A$	$7 B$	$7 A \wedge-B$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

$$
\begin{aligned}
& 3+7=7+3 \\
& 10(1+2)=10.1+10.2
\end{aligned}
$$

<take a look at logic_set_identities.pdf together> (available on course website next to today's notes)

Absorption Laws
$P \wedge(P \vee Q)=P$
$A \cap(A \cup B)=A$
$P \vee(P \wedge Q)=P$

Complement Laws

$$
\begin{aligned}
& P \vee \neg P=T \\
& P \wedge \neg P=F
\end{aligned}
$$

\longrightarrow Idempotent Laws

$$
\begin{aligned}
& P \vee P=P \\
& P \wedge P=P
\end{aligned}
$$

$$
A \cup A=A
$$

$$
A \cap A=A
$$

Identity.
 False $\vee P=P$
 True $\wedge P=P$

Domination:

True $\vee P=$ True
False $\wedge P=$ False

$$
\begin{aligned}
U \cup A & =U \\
\emptyset \cap A & =\emptyset
\end{aligned}
$$

Associative Laws

$$
\begin{aligned}
& (P \vee Q) \vee R=P \vee(Q \vee R) \\
& (P \wedge Q) \wedge R=P \wedge(Q \wedge R)
\end{aligned}
$$

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup(B \cup C) \\
& (A \cap B) \cap C=A \cap(B \cap C)
\end{aligned}
$$

Double Negation

$$
\neg \neg P=P
$$

$$
\left(A^{C}\right)^{C}=A
$$

DeMorgan's Laws

$$
\begin{aligned}
& \neg(P \vee Q)=\neg P \wedge \neg Q \\
& \neg(P \wedge Q)=\neg P \vee \neg Q
\end{aligned}
$$

$$
\begin{aligned}
& (A \cup B)^{C}=A^{C} \cap B^{C} \\
& (A \cap B)^{C}=A^{C} \cup B^{C}
\end{aligned}
$$

Distributive Laws

$$
\begin{aligned}
& P \wedge(Q \vee R)=(P \wedge Q) \vee(P \wedge R) \\
& P \vee(Q \wedge R)=(P \vee Q) \wedge(P \vee R)
\end{aligned}
$$

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A) B) \cap(A \cup C)
\end{aligned}
$$

$$
\begin{aligned}
(x, y) \cdot\left(x \cap y^{2}\right) & =x \cup\left(y \cap y^{c}\right) \quad \text { Distributive } \\
& =x \cup \varnothing \quad \text { COMPLEMENT } \\
& =x \quad \text { IDENTITY }
\end{aligned}
$$

$$
\begin{aligned}
& \neg(\neg A \vee B) \wedge \neg B=(\neg \neg A \wedge \neg B) \wedge \neg B \text { DE moem } \\
&=(A \wedge \neg B) \wedge \neg B \text { DovoE } \\
& \text { NEGWUE } \\
&=A \wedge(\neg B \wedge \neg B) \text { ASSOCRAMEI } \\
&=A \wedge \neg B \text { IDEMPOTENT }
\end{aligned}
$$

IN Class Acrwoy Simplify

Fueus unde A STEP BACK

$$
(A \cup B) \cap A^{c}
$$ Bur Norce $A \cap A^{2}$

$=\left(A \cap A^{c}\right) \cup\left(B \cap A^{c}\right)$
$=\varnothing \cup\left(B \cap A^{c}\right)$ complement
$=B \cap A^{C}$
IDENTITI

$$
\begin{aligned}
(7 x \wedge x) \vee(y \vee \neg \neg x) & =F \vee(y \vee \neg \neg x) \text { Complement } \\
& =F \vee(y \vee x) \text { Double } \\
& =y \vee x \quad \text { NED }
\end{aligned}
$$

<lego logic gate video https://youtu.be/RA2po1xk_0A?t=5 >

You can build logic gates (AND, OR, NOT) out of real life things!

- legos
($0=$ pin pushed in, $1=$ pin pulled out)
- electronics
($0=$ low voltage, $1=h i g h$ voltage)
- water
($0=$ empty tube, $1=$ tube has water)
- mechanical switches \& gears
($0=$ lever is down, $1=$ lever is up)

Why would you want to build logic gates out of real-life things?

More Generally ... Computers!

Digital Logic (another way of expression boolean algebra)

Many of these gates have to consider the physical layout of their inputs (pins, water, cable etc) so they can be arranged to produce intended behavior.

These "logic gates" emphasize the physical layout and connections between gates:

Digital Logic: some other symbols (you'll never see again in CS1800...)

Digital Logic: circuits
A circuit is a collection of logic gates which have been connected.
What logic expression is equivilent to the output below?

In Class Activity
For the circuit shown below:

- express it using logical symbols
- simplify this expression using the logical identities shown earlier (label each step please)
- draw a new circuit which is equivilent to your simplified expression

if time / for fun: design your own super complex circuit which is equivilent to something much simpler (see also, "rube goldberg machine")

Neofting Quavifier

$$
\begin{aligned}
& \neg(\forall x \\
& \text { icecream }(x)) \\
& =\exists x \text { च ice cream }(x)
\end{aligned}
$$

$$
\begin{aligned}
& \forall x \quad p(x) \rightarrow q(x) \\
& \forall x \quad \neg q(x) \rightarrow \neg p(x)
\end{aligned}
$$

