CS1800 Day 6

Admin:

- recitation solutions now available Friday (instead of immediately)

Content:

- Sets (subsets, empty set, powerset)
- Set Builder Notation
- Set Operations (Union, Intersection, Complement, Difference)

Set Builder Notation: one way to express a set $x \in \mathbb{N}$ $(3 \le x) \land (x \le 5)$ 2 (SOME CONDITION) X IN NATURAL SUCH THAT THE SET OF NUMBERS ,5.6, = & X GTH (3 = X)

In Class Activity: Set Builder Practice

Express the set A by explicitly listing all items it contains $A = \frac{2}{3} \times e^{2} \left| \frac{1}{3} \times \frac{1}{3} \right| \frac{1}{3} \times \frac{1}{3} = \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3}$

(DISTANCE FROM O)

Express the set B using set builder notation

B = set of all natural numbers x which have x mod 3 = 0 and x mod 7 = 0 and x < 40

$$B = \mathcal{Z} \times \mathcal{E} \mathcal{H} \left(\left(\times M \circ \mathcal{O} \mathcal{Z} = \partial \right) \wedge \left(\times M \circ \mathcal{O} \mathcal{Z} = \partial \right) \right) \\ \wedge \left(\times \mathcal{L} \mathcal{A} \right)$$

Venn Diagram: a way of visually representing set membership

- H = set of all sHaded shapes Q = set of all sQuares

 - U = Universal set, contains all shapes

Venn Diagram Gotcha: Just because an area exists, doesn't mean it contains any items (may be empty)

Set Operation: Difference (All items in one set but not another)

Set Operation: Symmetric Difference (All items in one set XOR another) (All items in one set or the other, but not both)

In Class Activity

Shade the indicated areas in each yenn diagram

Ad(onc)

Set Terminology: subsets

A is subset of B = all items in A are in B

ACB IS TRUE WHEN A, B MRE EDUAL

MIGHT CLARIFY TO ADD SPEUAL LANGUAUE TO DENOTE

Set Terminology: Proper Subset (one set is contained in another, larger, set)

$$A \subset B = A \sqcup ITEMS OF A ARE IN B = A \subseteq B$$

AND
B CONTRINS SOME ITEM NOT IN A $B = A \subseteq B$
B CONTRINS

SUBSET ASB

PROPER SUBSET

7 < 8

BCA

Set Terminology: Cardinality (the number of items in a set)

(A) = 4

 $A = \xi a, b, c, d\xi$

С

Set Terminology: Power Set

The power set of set A is the set of all sets which can be made from items in A

 $=\frac{2}{7}$ $\frac{2}{7}$, $\frac{2}{7}$, E MPT

|A| = n $\partial^2 = 1$ K=0 (K) $P(A) = \xi \varphi \xi$ $(1^{160} A = \xi_1) P(A) = \xi \phi (1) \zeta (2)^{(2)}$ $(1^{160} A = \xi_1) P(A) = \xi \phi (1) \zeta (2)^{(2)}$ $(1^{160} A = \xi_1) P(A) = \xi \phi (\xi_1) \xi (2) \zeta (2)^{(2)}$ $(1^{160} A = \xi_1) P(A) = \xi \phi (\xi_1) \zeta (2)^{(2)}$