CS1800 Day 6
Admin:

- recitation solutions now available Friday (instead of immediately)

Content:

- Sets (subsets, empty set, powerset)
- Set Builder Notation
- Set Operations (Union, Intersection, Complement, Difference)

My curry
A set is a collection of unique objects BRACES ARE Not great... Sony?

$$
\{1,2,3,4\}=\{1,2,3,4,4\}
$$

Poor form
\rightarrow AN TEEN IS IN SET OR NOT,
Example number sets you should be aware of: NO ITEM IS IN SET MORE TWIN ONCE

$$
\begin{aligned}
& \text { Set Builder Notation: one way to express a set } \\
& A=\left\{\left.\begin{array}{l}
\substack{\text { SEND } \\
x \in \mathbb{N} \\
x \in S}
\end{array} \right\rvert\,(3 \leq x) \wedge(x \leq 5)\right\} \\
& A \text { is The set of } x \text { in Natroent sect that <some conorrane> } \\
& N=\{0,1,0,3,4,5,6,7,8,9 \ldots\} \\
& \begin{array}{r}
\text { A } \\
A=\{3,4,5\}
\end{array}
\end{aligned}
$$

Express the set A by explicitly listing all items it contains
Absolute value (Distance from 0)

$$
\begin{aligned}
& A=\{x \in \mathbb{Z}| | x \mid<S\} \\
& A=\{-4,-3,-2,-1,0,1,2,3,4\} \\
& \text { Express the set B using set builder notation }
\end{aligned}
$$

$B=$ set of all natural numbers x which have $x \bmod 3=0$ and $x \bmod 7=0$ and $x<40$
(++ list all of its items)

$$
B=\{x \in \notin(x \operatorname{moo} 3=0) \wedge(x \text { moo } 7=0)\}
$$

Venn Diagram: a way of visually representing set membership
$\rightarrow \mathbf{H}=$ set of all sHaded shapes
Q = set of all sQuares
$\mathrm{U}=$ Universal set, contains all shapes

Venn Diagram Gotcha: Just because an area exists, doesn't mean it contains any items (may be empty)

GENERAGZABLE of

Less MisLEADing \mathfrak{A}

Set Operation: Complement (all the items NOT in some set)
TaO Notations for same TAINO

A- $A^{\circ}=\{x=0 \mid x \notin A\}$
ALL x in universe SUCH THAT
X is Not in A
(all the items in one set OR another)

$$
A \cup B=\{x \in U \mid x \in A \cup x \in B\}
$$

ALL x in uninerse such that x is in $A \quad x$ is in B
(all the items in one set AND another)

$$
A \cap B=\{x \in U \mid x \in A \wedge x \in B\}
$$

ALL x in uninerse such that x is in A AND x is in B

Tip
(ONION
〇 intersection

Set Operation: Difference (All items in one set but not another)

$$
A-B=\{x \in 0 \mid(x \in A) \cap(x \not x B)\}
$$

ALL X in universe such that x is in A AND x is Nor in B

Set Operation Symmetric Difference (All items in one set XOR another) (All items in one set or the other, but not both)

$$
\begin{aligned}
& A \Delta B= \\
& \{x \in O \mid \times e(A \cup B) \wedge \times \notin(A \cap B)\}
\end{aligned}
$$

ALL X in universe such that

$$
x \text { is in } A \cup B \text { AND } x \text { NoT in } A \cap B
$$

We say A, B are Dissent if $A \cap B=\varnothing$

\& NO ITEM CAN BE in BOTH A AND B

Set Terminology: subsets
A is subset of $B=$ all items in A are in B

Set Terminology: Set Equality
Given sets A, B:

ALL X in A also in B

$$
\begin{aligned}
& \frac{\text { is a subset of } A}{\downarrow} \\
& B \subseteq A \\
& x \in B \rightarrow x \in A
\end{aligned}
$$

Aus X in B Also in A
intuition A, B Have same items

Kind of funny:
$A \subseteq B$ is true water A, B me Equal

Might clarify to add speual lanounoe to Denote

- Are not equal
- one contained in Another

Set Terminology: Proper Subset (one set is contained in another, larger, set)

$$
B \text { contains some rem not in } A \quad B-A \neq \varnothing
$$

" A is Proper Subset of B

$$
\begin{array}{ll}
\text { SUBSET } & 7 \leqslant 8 \\
A \subseteq B & 7<8 \\
\text { PROPR SUBSET } & \\
A \subset B & 7<8
\end{array}
$$

$$
A=\{a, b, c, d\}
$$

$$
|A|=4
$$

Set Terminology: Power Set
The power set of set A is the set of all sets which can be made from items in A

$$
\begin{aligned}
A & =\{1, \partial\} \\
P(A) & =\{\{1\},\{2\},\{1, \partial\}, \underset{\text { EMPTy SET }}{d} \underset{\text { St }}{\infty}\}
\end{aligned}
$$

(IN Class Activity (If Time)
Suppose $A=\{1234\}$
Compute

$$
\begin{aligned}
& |A|=4
\end{aligned}
$$

$$
\begin{aligned}
& |A|=n \quad \sum_{k=0}^{k}\binom{n}{k} \quad \partial^{n} \\
& \therefore \quad \therefore=\phi \quad P(A)=\{\phi\} \\
& \partial^{0}=1
\end{aligned}
$$

$$
\begin{aligned}
& \partial \infty A=\{1 \partial\} P(A)=\{\phi,\{1\},\{\partial\},\{1, \partial\}\} \partial^{\partial}=4
\end{aligned}
$$

