
CS 1800: day16

Admin:
- HW5 due Friday
- HW6 released Friday

Content:
 - graph definitions & anatomy
 - graph representation

- list of lists
- adjacency matrix

 - graph equivilence (isomorphism)

Whats a graph?

A set of nodes (vertex) and a set of edges (and edge is a pair of nodes)

More commonly, folks use the word "graph" to mean figure (as below). This is a different kind of
graph. Many tech types use the word "figure" to describe these, no universal convention

Graph: Whats it good for?

Graphs are wonderful for representing things. Often, representing clearly is a big help!

Example: represent a maze as a graph. Node = intersection in maze
(start / end / dead-end too)

Edge = possible movement between
intersections

Graph: Whats it good for?

Graphs are wonderful for representing things. Often, representing clearly is a big help!

Graph: Whats it good for?

Graphs are wonderful for representing things. Often, representing clearly is a big help!

https://cdn.britannica.com/03/403-050-F1B9349F/Phylogeny-differences-cytochrome-c-
protein-sequence-organisms.jpg

Graph: Whats it good for?

Graphs are wonderful for representing things. Often, representing clearly is a big help!

Whats a graph?

A set of nodes (also known as: vertex / vertices)

A set of edges (each edge is a pair of nodes)

Warning:

There are a lot of terms referring to graph "stuff"

Most are super intuitive, but please double check definitions

Graph: Adjacency (undirected)

Two nodes are adjacent in a graph if there is an edge between them.

A node and an edge are adjacent if the node is in the edge (remember, edge = pair of nodes)

Two edges are adjacent if one node is adjacent to both

A node's degree is the number of edges which are adjacent to it

In Class Activity:

Draw a graph where the sum of degrees of all nodes is odd (or argue why this isn't possible)

What is the relationship between the following values:
- the sum of degrees for all nodes
- the number of edges in the graph

Stuck? Draw some little examples until you have your own eureka moment (really, its fun!)

Adjacent Sequences on a Graph (walk / path / cycle):

Walk - a sequence of adjacent edges. (equivilently: a sequence of adjacent nodes)

Path - a walk where each node is unique

Cycle - a path which starts and ends at the same node (only this last node is not-unique)

Trees! (a super useful construction)

A graph is connected if there exists a path from every node to any other node

Reminder: A cycle is a path (sequence of unique, adjacent edges) which starts and ends at the
same node

Tree - a connected graph without any cycles

In Class Activity

Identify a relationship between:
 - the total edges in a tree

- the total nodes in a tree

Remember: a tree is connected and doesn't contain any cycles

approach:
- draw some little examples
- make a conjecture (a guess as to the relationship)
- argue with your conjecture
- if you believe it, explain why your conjecture is true

Rooted Trees

Rooted Tree - a tree (connected, acyclic graph) which has one special node identified as the root

(useful fact about trees: there is a UNIQUE path between every pair of nodes)

Rooted Trees: Why go through the trouble?

Allows us to define family relationships:

parent of a node x: next node on path from x to root (root has no parent)
ex: D is the parent of B

children of node x: the set of all nodes which x is parent of
ex: {B, E} are children of D

a node is a leaf if it has no children:
ex: A, C and E are leafs

sibling of node x: the set of all nodes which whose parent is also the parent of x

ancestor of x: all nodes on the path to root

descendant of x: all nodes which have x as an ancestor

A subgraph is a graph whose nodes & edges are contained with another graph

Connected Component- a "largest" connected subgraph
("largest" = not part of any larger connected subgraph)

tip: often thinking about a graph in terms of its connected components is fruitful for insights

Forest - any acyclic graph

Forest - any acyclic graph
 (named since each connected component is a tree)

Special Graphs:

Directed Weighted non-simple

Each edge has a direction Each edge has a weight Edge may start / end
at same node

a simple graph has no such
"DAG": Directed Acyclic Graph edge

ok, lets take a breather ... that was a lot of new language ...

good news:
- only one more new graph vocab word today
- you needn't memorize anything, just take a peek back

not-so-good-news:
- graph language tends can have little inconsistencies per author
(e.g. is a node its own ancestor?)

Two nodes are neighbors if they are adjacent (there is an edge between them)
(note: definition assumes an undirected graph ... edges have no direction)

Graph Representation (on a computer): List Representation

Goal: represent all nodes & edges of a graph

Approach: For each node, store a list of all neighbors (convention: alphabetize)

Graph Representation (on a computer): Matrix Representation

Goal: represent all nodes & edges of a graph

Approach: Build |V| x |V| matrix (one row & col per node):
- 0 in row i and column j means node i and node j don't have edge between them
- 1 in row i and column j means node i and node j have edge between them

convention: alphabetize
convention: a node is not its own neighbor

Graph Representation (on a computer): Matrix Representation

Goal: represent all nodes & edges of a graph

Approach: Build |V| x |V| matrix (one row & col per node):
- 0 in row i and column j means node i and node j don't have edge between them
- 1 in row i and column j means node i and node j have edge between them

convention: alphabetize
convention: a node is not its own neighbor

In Class Activity:

Given the one representation of the graph, give its representation as the other two forms.

Forms of representing a graph:
 - picture (as is most common in the notes)
 - list representation on computer
 - matrix representation on computer

Graph isomorphism

high level: two graphs are isomorphic if they have same shape

intuition: two graphs are isomorphic when we can "rename" the nodes of one to get another

"rename": one-to-one correspondance (i.e. bijection)

