Logic and Set Identities:

The identities below are shown in the language of Boolean Algebra on the left (P, Q, R are Boolean variables) and Set Algebra on the right (A, B, C are subsets of some universal set U). This document uses the C superscript (A^{C}) instead of the bar notation (\bar{A}) to indicate the complement operation, they mean the same thing.

Associative Laws

$(P \vee Q) \vee R=P \vee(Q \vee R)$
$(P \wedge Q) \wedge R=P \wedge(Q \wedge R)$

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup(B \cup C) \\
& (A \cap B) \cap C=A \cap(B \cap C)
\end{aligned}
$$

Double Negation

$$
\neg \neg P=P
$$

$$
\left(A^{C}\right)^{C}=A
$$

DeMorgan's Laws

$$
\begin{aligned}
& \neg(P \vee Q)=\neg P \wedge \neg Q \\
& \neg(P \wedge Q)=\neg P \vee \neg Q
\end{aligned}
$$

$$
(A \cup B)^{C}=A^{C} \cap B^{C}
$$

$$
(A \cap B)^{C}=A^{C} \cup B^{C}
$$

Distributive Laws

$$
\begin{aligned}
& P \wedge(Q \vee R)=(P \wedge Q) \vee(P \wedge R) \\
& P \vee(Q \wedge R)=(P \vee Q) \wedge(P \vee R)
\end{aligned}
$$

$$
\begin{gathered}
A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{gathered}
$$

Absorption Laws

$P \wedge(P \vee Q)=P$
$A \cap(A \cup B)=A$
$P \vee(P \wedge Q)=P$
$A \cup(A \cap B)=A$

Complement Laws

$P \vee \neg P=T$
$A \cup A^{C}=U$
$P \wedge \neg P=F$

$$
A \cap A^{C}=\emptyset
$$

Idempotent Laws

$$
P \vee P=P
$$

$P \wedge P=P$

$$
\begin{array}{r}
A \cup A=A \\
A \cap A=A
\end{array}
$$

Identity

False $\vee P=P$

$$
\emptyset \cup A=A
$$

True $\wedge P=P$
$U \cap A=A$

Domination:

True $\vee \mathrm{P}=$ True
$U \cup A=U$
False $\wedge P=$ False
$\emptyset \cap A=\emptyset$

